Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Lee Penn is active.

Publication


Featured researches published by R. Lee Penn.


Geochimica et Cosmochimica Acta | 1999

Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania

R. Lee Penn; Jillian F. Banfield

Abstract High-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) peak broadening (Scherer) analysis were used to study coarsening and morphology development of nanocrystals. Experimental work used synthetic, equidimensional anatase (TiO2) particles about 5 nm in diameter. Under hydrothermal conditions (100–250°C, 15–40 bars), rapid growth occurs along [001], driven in part by the relatively high surface energy of (001) and in part by a kinetic effect involving a cyclic generation of highly reactive adsorption sites. Rapid growth along [001] depresses the growth rate until (001) surfaces shrink to a critical cluster size. A second major coarsening mechanism significantly reduces the surface energy, especially under acidic conditions. This mechanism involves topotactic attachment of primary particles at high energy surfaces (most commonly {112}, less commonly (001)) and can result in elongate single crystals. Oriented attachment may be an important coarsening mechanism under a wide range of conditions encountered in the laboratory and in natural environments.


Science | 2008

Nanominerals, Mineral Nanoparticles, and Earth Systems

Michael F. Hochella; Steven K. Lower; Patricia A. Maurice; R. Lee Penn; Nita Sahai; Donald L. Sparks; Benjamin S. Twining

Minerals are more complex than previously thought because of the discovery that their chemical properties vary as a function of particle size when smaller, in at least one dimension, than a few nanometers, to perhaps as much as several tens of nanometers. These variations are most likely due, at least in part, to differences in surface and near-surface atomic structure, as well as crystal shape and surface topography as a function of size in this smallest of size regimes. It has now been established that these variations may make a difference in important geochemical and biogeochemical reactions and kinetics. This recognition is broadening and enriching our view of how minerals influence the hydrosphere, pedosphere, biosphere, and atmosphere.


Nature Materials | 2008

Hierarchical nanofabrication of microporous crystals with ordered mesoporosity

Wei Fan; Mark Snyder; Sandeep Kumar; Pyung Soo Lee; Won Cheol Yoo; Alon V. McCormick; R. Lee Penn; Andreas Stein; Michael Tsapatsis

Shaped zeolite nanocrystals and larger zeolite particles with three-dimensionally ordered mesoporous (3DOm) features hold exciting technological implications for manufacturing thin, oriented molecular sieve films and realizing new selective, molecularly accessible and robust catalysts. A recognized means for controlled synthesis of such nanoparticulate and imprinted materials revolves around templating approaches, yet identification of an appropriately versatile template has remained elusive. Because of their highly interconnected pore space, ordered mesoporous carbon replicas serve as conceptually attractive materials for carrying out confined synthesis of zeolite crystals. Here, we demonstrate how a wide range of crystal morphologies can be realized through such confined growth within 3DOm carbon, synthesized by replication of colloidal crystals composed of size-tunable (about 10-40 nm) silica nanoparticles. Confined crystal growth within these templates leads to size-tunable, uniformly shaped silicalite-1 nanocrystals as well as 3DOm-imprinted single-crystal zeolite particles. In addition, novel crystal morphologies, consisting of faceted crystal outgrowths from primary crystalline particles have been discovered, providing new insight into constricted crystal growth mechanisms underlying confined synthesis.


Science | 2015

Crystallization by particle attachment in synthetic, biogenic, and geologic environments

James J. De Yoreo; P. U. P. A. Gilbert; Nico A. J. M. Sommerdijk; R. Lee Penn; Stephen Whitelam; Derk Joester; Hengzhong Zhang; Jeffrey D. Rimer; Alexandra Navrotsky; Jillian F. Banfield; Adam F. Wallace; F. Marc Michel; Fiona C. Meldrum; Helmut Cölfen; Patricia M. Dove

Growing crystals by attaching particles Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mechanisms. Developing predictive models for these crystal growth and nucleation pathways will improve materials synthesis strategies. These approaches will also improve fundamental understanding of natural processes such as biomineralization and trace element cycling in aquatic ecosystems. Science, this issue 10.1126/science.aaa6760 Materials nucleate and grow by the assembly of small particles and multi-ion complexes. BACKGROUND Numerous lines of evidence challenge the traditional interpretations of how crystals nucleate and grow in synthetic and natural systems. In contrast to the monomer-by-monomer addition described in classical models, crystallization by addition of particles, ranging from multi-ion complexes to fully formed nanocrystals, is now recognized as a common phenomenon. This diverse set of pathways results from the complexity of both the free-energy landscapes and the reaction dynamics that govern particle formation and interaction. Whereas experimental observations clearly demonstrate crystallization by particle attachment (CPA), many fundamental aspects remain unknown—particularly the interplay of solution structure, interfacial forces, and particle motion. Thus, a predictive description that connects molecular details to ensemble behavior is lacking. As that description develops, long-standing interpretations of crystal formation patterns in synthetic systems and natural environments must be revisited. Here, we describe the current understanding of CPA, examine some of the nonclassical thermodynamic and dynamic mechanisms known to give rise to experimentally observed pathways, and highlight the challenges to our understanding of these mechanisms. We also explore the factors determining when particle-attachment pathways dominate growth and discuss their implications for interpreting natural crystallization and controlling nanomaterials synthesis. ADVANCES CPA has been observed or inferred in a wide range of synthetic systems—including oxide, metallic, and semiconductor nanoparticles; and zeolites, organic systems, macromolecules, and common biomineral phases formed biomimetically. CPA in natural environments also occurs in geologic and biological minerals. The species identified as being responsible for growth vary widely and include multi-ion complexes, oligomeric clusters, crystalline or amorphous nanoparticles, and monomer-rich liquid droplets. Particle-based pathways exceed the scope of classical theories, which assume that a new phase appears via monomer-by-monomer addition to an isolated cluster. Theoretical studies have attempted to identify the forces that drive CPA, as well as the thermodynamic basis for appearance of the constituent particles. However, neither a qualitative consensus nor a comprehensive theory has emerged. Nonetheless, concepts from phase transition theory and colloidal physics provide many of the basic features needed for a qualitative framework. There is a free-energy landscape across which assembly takes place and that determines the thermodynamic preference for particle structure, shape, and size distribution. Dynamic processes, including particle diffusion and relaxation, determine whether the growth process follows this preference or another, kinetically controlled pathway. OUTLOOK Although observations of CPA in synthetic systems are reported for diverse mineral compositions, efforts to establish the scope of CPA in natural environments have only recently begun. Particle-based mineral formation may have particular importance for biogeochemical cycling of nutrients and metals in aquatic systems, as well as for environmental remediation. CPA is poised to provide a better understanding of biomineral formation with a physical basis for the origins of some compositions, isotopic signatures, and morphologies. It may also explain enigmatic textures and patterns found in carbonate mineral deposits that record Earth’s transition from an inorganic to a biological world. A predictive understanding of CPA, which is believed to dominate solution-based growth of important semiconductor, oxide, and metallic nanomaterials, promises advances in nanomaterials design and synthesis for diverse applications. With a mechanism-based understanding, CPA processes can be exploited to produce hierarchical structures that retain the size-dependent attributes of their nanoscale building blocks and create materials with enhanced or novel physical and chemical properties. Major gaps in our understanding of CPA. Particle attachment is influenced by the structure of solvent and ions at solid-solution interfaces and in confined regions of solution between solid surfaces. The details of solution and solid structure create the forces that drive particle motion. However, as the particles move, the local structure and corresponding forces change, taking the particles from a regime of long-range to short-range interactions and eventually leading to particle-attachment events. Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments.


American Mineralogist | 1998

Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO 2

R. Lee Penn; Jillian F. Banfield

Abstract Atomic-resolution transmission electron micrographs show that nanocrystalline TiO2 coarsens by oriented attachment and growth under hydrothermal conditions. In addition to forming homogeneous single crystals, attachment at anatase surfaces leads to twinning on {112} and intergrowths on (001) and {001}. Brookite, a polytype of anatase, occurs at some {112} twin surfaces. Alternating two octahedra-wide structural slabs in brookite are shared with the two adjacent anatase twin domains. Because {112} anatase twin interfaces contain one unit cell of brookite, we propose that brookite may nucleate at twin planes and grow at the expense of anatase. Alternatively, anatase-brookite interfaces may form by oriented attachment of primary brookite and anatase {112} crystallites. In this case, three unit cell-wide lamellae of brookite are interpreted as remnants of larger crystals that partly converted to anatase by propagation of the anatase-brookite interface. Which phase is stable is unclear over this particle size range, and products of random thermal fluctuations may be preserved by quenching. Regardless of reaction direction, polytypic interconversion of anatase and brookite essentially involves displacement of Ti (by c/4 brookite) into adjacent octahedral sites in one of the pair of two octahedra-wide structural slabs. The results have broad relevance for nucleation and growth models as they suggest that twinning and polytypism in macroscopic crystals can originate at oriented interfaces between primary nanocrystalline particles early in their crystallization history.


Journal of the American Chemical Society | 2010

Oriented Aggregation: Formation and Transformation of Mesocrystal Intermediates Revealed

Virany M. Yuwono; Nathan D. Burrows; Jennifer A. Soltis; R. Lee Penn

Oriented aggregation is a special case of aggregation in which nanocrystals self-assemble and form new secondary single crystals. This process has been suggested to proceed via an intermediate state known as the mesocrystal, in which the nanocrystals have parallel crystallographic alignment but are spatially separated. We present the first direct observations of mesocrystals with size and shape similar to product oriented aggregates by employing cryo-TEM to directly image the particles in aqueous suspension. The cryo-TEM images reveal that mesocrystals not only form but also transform to the final single crystal product while in the dispersed state. Further, high-resolution cryo-TEM images demonstrate that the mesocrystals are composed of spatially separated and crystallographically aligned nanocrystals.


Journal of the American Chemical Society | 2008

Layer Structure Preservation during Swelling, Pillaring, and Exfoliation of a Zeolite Precursor

Sudeep Maheshwari; Edgar Jordan; Sandeep Kumar; Frank S. Bates; R. Lee Penn; Daniel F. Shantz; Michael Tsapatsis

MCM-22(P), the precursor to zeolite MCM-22, consists of stacks of layers that can be swollen and exfoliated to produce catalytically active materials. However, the current swelling procedures result in significant degradation of crystal morphology along with partial loss of crystallinity and dissolution of the crystalline phase. Fabrication of polymer nanocomposites and coatings with MCM-22 for separation, barrier, and other applications requires a swelling method that does not alter drastically the crystal morphology and layer structure and preserves the high aspect ratio of the layers. Here, we demonstrate such a method by swelling MCM-22(P) at room temperature. The low-temperature process does not disrupt the framework connectivity present in the parent MCM-22(P) material. By extensive washing with water, the swollen material, MCM-22(PS-RT), evolves to a new ordered layered structure. Interestingly, the swelling procedure is reversible and the swollen material can be restored back to MCM-22(P) by acidification of the sample. The swollen material can also be pillared to produce an MCM-36 analogue. It can also be exfoliated, and layers can be incorporated in a polymer matrix to make nanocomposites.


American Mineralogist | 1999

Formation of rutile nuclei at anatase (112) twin interfaces and the phase transformation mechanism in nanocrystalline titania

R. Lee Penn; Jillian F. Banfield

Abstract Room-temperature volume measurements of the complete set of calcite-structure carbonates in the pressure range 0-8.1 GPa revealed systematic differences in compressibilities that depend on cation type, resulting in significant deviations from empirical relations of an inverse linear correlation between K0 and V0. The bulk modulus for MgCO3 lies approximately 18 GPa below the trend for the 3d transition metal carbonates, which show an expected inverse linear correlation of bulk modulus with ambient cell volume (and M-O bond length). The bulk modulus of CdCO3, whose M-O bond length and cell volume are only slightly smaller than those of CaCO3, lies up to 10 GPa above the trend of the 3d transition metal carbonates and about 30 GPa above that of calcite. These deviations in compressibility trends as a function of cell volume (or M-O bond length) are expressed as differences in a axis compressibility but not in c axis compressibility, which shows a nearly linear increase with M-O distance. Hence, systematic behavior is apparently limited to subsets of carbonates in which metal ions share the same valence electron character (i.e., s vs. 3d vs. 4d) and is primarily attributed to unexpected compressibility differences along the a axis. Crystal-field effects, beyond those reflected in the M-O distances, cannot account for the observed compressibilities. Nonbonded interactions also fail to explain the deviations from predicted trends. Variations of electronegativity and vibrational frequency with ionic radius for the relevant metal ions show differences that are qualitatively similar to the observed trends of bulk modulus, suggesting that differences in bonding character may contribute to the different behaviors among the subsets of calcite-structure carbonates. However, it is most likely that a combination of factors is necessary to account fully for the observed behavior.


Environmental Science & Technology | 2010

Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.

Brian C. Reinsch; Brady S. Forsberg; R. Lee Penn; Christopher S. Kim; Gregory V. Lowry

Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl(-), NO(3)(-), SO(4)(2-), HPO(4)(2-), and HCO(3)(-)) or to dissolved oxygen (saturated, approximately 9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe(0) content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe(0) and Fe(3)O(4), while the 6 month aged samples contained additional mineral phases such as vivianite (Fe(3)(PO(4))(2).8H(2)O) and iron sulfate species, possibly schwertmannite (Fe(3+)(16)O(16)(OH,SO(4))(12-13).10-12H(2)O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe(0) and evolved both magnetite and maghemite (gamma-Fe(2)O(3)) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2004

On the characterization of environmental nanoparticles

David J. Burleson; M. D. Driessen; R. Lee Penn

Abstract The presence and release of nanoparticles into the environment has important implications for human health and the environment. This article highlights and describes techniques that are effective in the characterization of anthropogenic and naturally occurring nanoparticles. Particle attributes like size, size distribution, shape, structure, microstructure, composition, and homogeneity are critically important to determining the potential impact of such materials on health and the environment. Many techniques yield data for a collection of nanoparticles; while others yield data for individual nanoparticles; and still others yield data showing the size, distribution of chemical species, and variations in structure and microstructure for a single nanoparticle. All are important in the context of environmental nanoparticles. Many of these techniques are complementary, and depending on the information required, the ideal characterization usually employs multiple techniques.

Collaboration


Dive into the R. Lee Penn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasmine Erbs

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yohan Guyodo

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge