Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Leveille is active.

Publication


Featured researches published by R. Leveille.


Science | 2014

A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

John P. Grotzinger; Dawn Y. Sumner; L. C. Kah; K. Stack; S. Gupta; Lauren A. Edgar; David M. Rubin; Kevin W. Lewis; Juergen Schieber; N. Mangold; Ralph E. Milliken; P. G. Conrad; David J. DesMarais; Jack D. Farmer; K. L. Siebach; F. Calef; Joel A. Hurowitz; Scott M. McLennan; D. Ming; D. T. Vaniman; Joy A. Crisp; Ashwin R. Vasavada; Kenneth S. Edgett; M. C. Malin; D. Blake; R. Gellert; Paul R. Mahaffy; Roger C. Wiens; Sylvestre Maurice; J. A. Grant

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.


Science | 2014

Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars.

Scott M. McLennan; R. B. Anderson; James F. Bell; John C. Bridges; F. Calef; John Campbell; B. C. Clark; S. M. Clegg; P. G. Conrad; A. Cousin; D. J. Des Marais; Gilles Dromart; M. D. Dyar; Lauren A. Edgar; Bethany L. Ehlmann; Claude Fabre; O. Forni; O. Gasnault; R. Gellert; S. Gordon; A. Grant; John P. Grotzinger; S. Gupta; K. E. Herkenhoff; J. A. Hurowitz; Penelope L. King; S. Le Mouélic; L. A. Leshin; R. Leveille; Kevin W. Lewis

Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine–rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.


Science | 2013

Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars

P.-Y. Meslin; O. Gasnault; Olivier Forni; S. Schröder; A. Cousin; G. Berger; S. M. Clegg; J. Lasue; S. Maurice; Violaine Sautter; S. Le Mouélic; Roger C. Wiens; C. Fabre; W. Goetz; David L. Bish; Nicolas Mangold; Bethany L. Ehlmann; N. Lanza; A.-M. Harri; R. B. Anderson; E. B. Rampe; Timothy H. McConnochie; P. Pinet; Diana L. Blaney; R. Leveille; D. Archer; B. L. Barraclough; Steve Bender; D. Blake; Jennifer G. Blank

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.


Extremophiles | 2006

Microbial ecology and biodiversity in permafrost

Blaire Steven; R. Leveille; Wayne H. Pollard; Lyle G. Whyte

Permafrost represents 26% of terrestrial soil ecosystems; yet its biology, essentially microbiology, remains relatively unexplored. The permafrost environment is considered extreme because indigenous microorganisms must survive prolonged exposure to subzero temperatures and background radiation for geological time scales in a habitat with low water activity and extremely low rates of nutrient and metabolite transfer. Yet considerable numbers and biodiversity of bacteria exist in permafrost, some of which may be among the most ancient viable life on Earth. This review describes the permafrost environment as a microbial habitat and reviews recent studies examining microbial biodiversity found in permafrost as well as microbial growth and activity at ambient in situ subzero temperatures. These investigations suggest that functional microbial ecosystems exist within the permafrost environment and may have important implications on global biogeochemical processes as well as the search for past or extant life in permafrost presumably present on Mars and other bodies in our solar system.


Journal of Geophysical Research | 2014

Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars

M. Nachon; Samuel Michael Clegg; N. Mangold; Susanne Schröder; L. C. Kah; Gilles Dromart; A. M. Ollila; Jeffrey R. Johnson; D. Z. Oehler; John C. Bridges; S. Le Mouélic; O. Forni; Roger C. Wiens; R. B. Anderson; Diana L. Blaney; James F. Bell; B. C. Clark; A. Cousin; M. D. Dyar; Bethany L. Ehlmann; C. Fabre; O. Gasnault; John P. Grotzinger; J. Lasue; E. Lewin; R. Leveille; Scott M. McLennan; Sylvestre Maurice; P.-Y. Meslin; W. Rapin

The Curiosity rover has analyzed abundant light-toned fracture-fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire similar to 5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur-rich fluids may have originated in previously precipitated sulfate-rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions.


Journal of Geophysical Research | 2015

Diagenesis and clay mineral formation at Gale Crater, Mars

John C. Bridges; S. P. Schwenzer; R. Leveille; Frances Westall; Roger C. Wiens; N. Mangold; Thomas F. Bristow; P. Edwards; Gilles Berger

The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ∽7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.


Journal of Geophysical Research | 2014

Chemistry of fracture‐filling raised ridges in Yellowknife Bay, Gale Crater: Window into past aqueous activity and habitability on Mars

R. Leveille; John C. Bridges; Roger C. Wiens; Nicolas Mangold; A. Cousin; N. Lanza; O. Forni; A. M. Ollila; John P. Grotzinger; Samuel Michael Clegg; K. L. Siebach; Gilles Berger; B. C. Clark; C. Fabre; Ryan Anderson; O. Gasnault; Diana L. Blaney; Lauren DeFlores; Laurie A. Leshin; Sylvestre Maurice; Horton E. Newsom

The ChemCam instrument package on the Curiosity rover was used to characterize distinctive raised ridges in the Sheepbed mudstone, Yellowknife Bay formation, Gale Crater. The multilayered, fracture-filling ridges are more resistant to erosion than the Sheepbed mudstone rock in which they occur. The bulk average composition of the raised ridges is enriched in MgO by 1.2-1.7 times (average of 8.3-11.4 wt %; single-shot maximum of 17.0 wt %) over that of the mudstone. Al2O3 is anticorrelated with MgO, while Li is somewhat enriched where MgO is highest. Some ridges show a variation in composition with different layers on a submillimeter scale. In particular, the McGrath target shows similar high-MgO resistant outer layers and a low-MgO, less resistant inner layer. This is consistent with the interpretation that the raised ridges are isopachous fracture-filling cements with a stratigraphy that likely reveals changes in fluid composition or depositional conditions over time. Overall, the average composition of the raised ridges is close to that of a Mg- and Fe-rich smectite, or saponite, which may also be the main clay mineral constituent of the host mudstone. These analyses provide evidence of diagenesis and aqueous activity in the early postdepositional history of the Yellowknife Bay formation, consistent with a low salinity to brackish fluid at near-neutral or slightly alkaline pH. The fluids that circulated through the fractures likely interacted with the Sheepbed mudstone and (or) other stratigraphically adjacent rock units of basaltic composition and leached Mg from them preferentially.


Journal of Geophysical Research | 2015

Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars

N. Mangold; O. Forni; Gilles Dromart; Kathryn M. Stack; Roger C. Wiens; O. Gasnault; Dawn Y. Sumner; M. Nachon; P.-Y. Meslin; R. B. Anderson; B. Barraclough; James F. Bell; Gilles Berger; Diana L. Blaney; John C. Bridges; F. Calef; B. C. Clark; S. M. Clegg; A. Cousin; Lauren A. Edgar; Kenneth S. Edgett; Bethany L. Ehlmann; C. Fabre; Martin R. Fisk; John P. Grotzinger; Sanjeev Gupta; K. E. Herkenhoff; Joel A. Hurowitz; Jeffrey R. Johnson; L. C. Kah

The Yellowknife Bay formation represents a similar to 5m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (similar to 1m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.


Journal of Geophysical Research | 2014

Subaqueous shrinkage cracks in the Sheepbed mudstone: Implications for early fluid diagenesis, Gale crater, Mars

K. L. Siebach; John P. Grotzinger; L. C. Kah; Kathryn M. Stack; M. C. Malin; R. Leveille; Dawn Y. Sumner

The Sheepbed mudstone, Yellowknife Bay formation, Gale crater, represents an ancient lakebed now exhumed and exposed on the Martian surface. The mudstone has four diagenetic textures, including a suite of early diagenetic nodules, hollow nodules, and raised ridges and later diagenetic light-toned veins that crosscut those features. In this study, we describe the distribution and characteristics of the raised ridges, a network of short spindle-shaped cracks that crosscut bedding, do not form polygonal networks, and contain two to four layers of isopachous, erosion-resistant cement. The cracks have a clustered distribution within the Sheepbed member and transition laterally into concentrations of nodules and hollow nodules, suggesting that these features formed penecontemporaneously. Because of the erosion-resistant nature of the crack fills, their three-dimensional structure can be observed. Cracks that transition from subvertical to subhorizontal orientations suggest that the cracks formed within the sediment rather than at the surface. This observation and comparison to terrestrial analogs indicate that these are syneresis cracks—cracks that formed subaqueously. Syneresis cracks form by salinity changes that cause sediment contraction, mechanical shaking of sediment, or gas production within the sediment. Examination of diagenetic features within the Sheepbed mudstone favors a gas production mechanism, which has been shown to create a variety of diagenetic morphologies comparable to the raised ridges and hollow nodules. The crack morphology and the isopachous, layered cement fill show that the cracks were filled in the phreatic zone and that the Sheepbed mudstone remained fluid saturated after deposition and through early burial and lithification.


Planetary and Space Science | 2010

Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review

R. Leveille; Saugata Datta

Collaboration


Dive into the R. Leveille's collaboration.

Top Co-Authors

Avatar

Roger C. Wiens

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Gasnault

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar

B. C. Clark

Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Cousin

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar

O. Forni

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. M. Ollila

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge