Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. M. González Delgado is active.

Publication


Featured researches published by R. M. González Delgado.


Monthly Notices of the Royal Astronomical Society | 2005

Evolutionary stellar population synthesis at high spectral resolution: optical wavelengths

R. M. González Delgado; M. Cerviño; Lucimara P. Martins; Claus Leitherer; Peter H. Hauschildt

We present the single stellar population (SSP) synthesis results of our new synthetic stellar atmosphere models library with a spectral sampling of 0.3 A, covering the wavelength range from 3000 to 7000 A for a wide range of metallicities (twice solar, solar, half solar and 1/10 solar). The stellar library is composed of 1650 spectra computed with the latest improvements in stellar atmospheres. In particular, it incorporates non-local thermodynamic equilibrium (LTE) line-blanketed models for hot (T eff ≥ 27 500 K), and LTE line-blanketed models (Phoenix) for cool (3000 ≤ T eff ≤ 4500 K) stars. Because of the high spectral resolution of this library, evolutionary synthesis models can be used to predict the strength of numerous weak absorption lines and the evolution of the profiles of the strongest lines over a wide range of ages. The SSP results have been calculated for ages from 1 Myr to 17 Gyr using the stellar evolutionary tracks provided by the Geneva and Padova groups. For young stellar populations, our results have a very detailed coverage of high-temperature stars with similar results for the Padova and Geneva isochrones. For intermediate and old stellar populations, our results, once degraded to a lower resolution, are similar to the ones obtained by other groups (limitations imposed by the stellar evolutionary physics notwidthstanding). The limitations and advantages of our models for the analysis of integrated populations are described. The full set of the stellar library and the evolutionary models are available for retrieval at the websites http://www.iaa.csic.es/∼rosa and http://www.iaa.csic.es/∼mcs/sed@, or on request from the first two authors.


Astronomy and Astrophysics | 2012

CALIFA, the Calar Alto Legacy Integral Field Area survey

B. Husemann; Knud Jahnke; S. F. Sánchez; D. Barrado; S. Bekeraite; D. J. Bomans; A. Castillo-Morales; Cristina Catalán-Torrecilla; R. Cid Fernandes; J. Falcón-Barroso; R. García-Benito; R. M. González Delgado; J. Iglesias-Páramo; Benjamin D. Johnson; D. Kupko; R. Lopez-Fernandez; Mariya Lyubenova; R. A. Marino; D. Mast; Arpad Miskolczi; A. Monreal-Ibero; A. Gil de Paz; Enrique Pérez; Isabel Pérez; F. F. Rosales-Ortega; T. Ruiz-Lara; U. Schilling; G. van de Ven; J. Walcher; J. Alves

We present the Calar Alto Legacy Integral Field Area survey (CALIFA). CALIFAs main aim is to obtain spatially resolved spectroscopic information for ~600 galaxies of all Hubble types in the Local Universe (0.005< z <0.03). The survey has been designed to allow three key measurements to be made: (a) Two-dimensional maps of stellar populations (star formation histories, chemical elements); (b) The distribution of the excitation mechanism and element abundances of the ionized gas; and (c) Kinematic properties (velocity ?elds, velocity dispersion), both from emission and from absorption lines. To cover the full optical extension of the target galaxies (i.e. out to a 3sigma depth of ~23 mag/arcsec2), CALIFA uses the exceptionally large ?eld of view of the PPAK/PMAS IFU at the 3.5m telescope of the Calar Alto observatory. We use two grating setups, one covering the wavelength range between 3700 and 5000 AA at a spectral resolution R~1650, and the other covering 4300 to 7000 AA at R~850. The survey was allocated 210 dark nights, distributed in 6 semesters and starting in July 2010 and is carried out by the CALIFA collaboration, comprising ~70 astronomers from 8 di?erent countries. As a legacy survey, the fully reduced data will be made publically available, once their quality has been veri?ed. We showcase here early results obtained from the data taken so far (21 galaxies).


Monthly Notices of the Royal Astronomical Society | 2005

Starbursts and the triggering of the activity in nearby powerful radio galaxies

C. N. Tadhunter; T. G. Robinson; R. M. González Delgado; K. A. Wills; R. Morganti

We present high-quality long-slit spectra for three nearby powerful radio galaxies – 3C 293, 3C 305 and PKS 1345+12. These were taken with the aim of characterizing the young stellar populations (YSP), and thereby investigating the evolution of the host galaxies, as well as the events that triggered the activity. Isochrone spectral synthesis modelling of the wide wavelength coverage spectra of nuclear and off-nuclear continuum-emitting regions have been used to estimate the ages, masses and luminosities of the YSP component, taking full account of reddening effects and potential contamination by activity-related components. We find that the YSP make a substantial contribution to the continuum flux in the off-nuclear regions on a radial scale of 1–20 kpc in all three objects. Moreover, in two objects we find evidence for reddened post-starburst stellar populations in the near-nuclear regions of the host galaxies. The YSP are relatively old (0.1–2 Gyr), massive (109 < MYSP < 2 × 1010 M⊙) and make up a large proportion (∼1–50 per cent) of the total stellar mass in the regions of the galaxies sampled by the observations. Overall, these results are consistent with the idea that the nuclear activity of active galactic nuclei in some radio galaxies is triggered by major gas-rich mergers. Therefore, these radio galaxies form part of the subset of early-type galaxies that is evolving most rapidly in the local Universe. Intriguingly, the results also suggest that the radio jets are triggered relatively late in the merger sequence, and that there is an evolutionary link between radio galaxies and luminous/ultraluminous infrared galaxies.


Astronomy and Astrophysics | 2013

Mass-metallicity relation explored with CALIFA - I. Is there a dependence on the star-formation rate?

S. F. Sánchez; F. F. Rosales-Ortega; Bruno Jungwiert; J. Iglesias-Páramo; J. M. Vílchez; R. A. Marino; C. J. Walcher; B. Husemann; D. Mast; A. Monreal-Ibero; R. Cid Fernandes; Emmanuelle Perez; R. M. González Delgado; R. García-Benito; L. Galbany; G. van de Ven; Knud Jahnke; H. Flores; Joss Bland-Hawthorn; A. R. Lopez-Sanchez; V. Stanishev; Daniel Miralles-Caballero; Angeles I. Díaz; P. Sánchez-Blázquez; M. Mollá; Anna Gallazzi; P. Papaderos; J. M. Gomes; N. Gruel; Isabel Pérez

We studied the global and local ℳ-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2−3 effective radii), with a resolution high enough to separate individual H II regions and/or aggregations. About 3000 individual H II regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise ratio to derive the oxygen abundance and star-formation rate associated with each region. In addition, we computed the integrated and spatially resolved stellar masses (and surface densities) based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion lower than the one already reported in the literature (σ_Δlog (O/H) = 0.07 dex). Indeed, this dispersion is only slightly higher than the typical error derived for our oxygen abundances. However, we found no secondary relation with the star-formation rate other than the one induced by the primary relation of this quantity with the stellar mass. The analysis for our sample of ~3000 individual H II regions confirms (i) a local mass-metallicity relation and (ii) the lack of a secondary relation with the star-formation rate. The same analysis was performed with similar results for the specific star-formation rate. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, such like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk-dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.


The Astrophysical Journal | 2013

THE EVOLUTION OF GALAXIES RESOLVED IN SPACE AND TIME: A VIEW OF INSIDE-OUT GROWTH FROM THE CALIFA SURVEY

Emmanuelle Perez; R. Cid Fernandes; R. M. González Delgado; R. García-Benito; S. F. Sánchez; B. Husemann; D. Mast; J. R. Rodón; D. Kupko; N. Backsmann; A. L. de Amorim; G. van de Ven; J. Walcher; Lutz Wisotzki; C. Cortijo-Ferrero

A solar active region (AR) is a three-dimensional magnetic structure formed in the convection zone, whose property is fundamentally important for determining the coronal structure and solar activity when emerged. However, our knowledge on the detailed 3-D structure prior to its emergence is rather poor, largely limited by the low cadence and sensitivity of previous instruments. Here, using the 45-second high-cadence observations from the Helioseismic and Magnetic Imager (\emph{HMI}) onboard the Solar Dynamics Observatory (\emph{SDO}), we are able for the first time to reconstruct a 3-D datacube and infer the detailed subsurface magnetic structure of NOAA AR 11158 and to characterize its magnetic connectivity and topology. This task is accomplished with the aid of the image-stacking method and advanced 3-D visualization. We find that the AR consists of two major bipoles, or four major polarities. Each polarity in 3-D shows interesting tree-like structure, i.e. while the root of the polarity appears as a single tree-trunk-like tube, the top of the polarity has multiple branches consisting of smaller and thinner flux-tubes which connect to the branches of the opposite polarity that is similarly fragmented. The roots of the four polarities align well along a straight line, while the top branches are slightly non-coplanar. Our observations suggest that an active region, even appearing highly complicated on the surface, may originate from a simple straight flux-tube that undergoes both horizontal and vertical bifurcation processes during its rise through the convection zone.


Astronomy and Astrophysics | 2014

Stellar population gradients in galaxy discs from the CALIFA survey: the influence of bars

P. Sánchez Blázquez; F. F. Rosales Ortega; J. Méndez Abreu; I. Pérez; S. F. Sánchez; S. Zibetti; J. A. L. Aguerri; Joss Bland-Hawthorn; Cristina Catalán Torrecilla; R. Cid Fernandes; A. L. de Amorim; A. de Lorenzo Cáceres; J. Falcón Barroso; A. Galazzi; R. García Benito; Armando Gil de Paz; R. M. González Delgado; B. Husemann; Jorge Iglesias Paramo; Bruno Jungwiert; R. A. Marino; I. Márquez; D. Mast; M. A. Mendoza; M. Mollá; P. Papaderos; T. Ruiz Lara; G. van de Ven; C. J. Walcher; L. Wisotzki

While studies of gasphase metallicity gradients in disc galaxies are common, very little has been done towards the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age distributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. In contrast to this, the values of both age and metallicity at similar to 2.5 scale lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than the discs. One of the goals of the present paper is to test the theoretical prediction that non-linear coupling between the bar and the spiral arms is an efficient mechanism for producing radial migrations across significant distances within discs. The process of radial migration should flatten the stellar metallicity gradient with time and, therefore, we would expect flatter stellar metallicity gradients in barred galaxies. However, we do not find any difference in the metallicity or age gradients between galaxies with and without bars. We discuss possible scenarios that can lead to this lack of difference.


Astronomy and Astrophysics | 2015

The CALIFA survey across the Hubble sequence: Spatially resolved stellar population properties in galaxies

R. M. González Delgado; R. García-Benito; Emmanuelle Perez; R. Cid Fernandes; A. L. de Amorim; C. Cortijo-Ferrero; E. A. D. Lacerda; R. López Fernández; N. Vale-Asari; S. F. Sánchez; M. Mollá; T. Ruiz-Lara; P. Sánchez-Blázquez; C. J. Walcher; J. Alves; J. A. L. Aguerri; S. Bekeraite; Joss Bland-Hawthorn; L. Galbany; Anna Gallazzi; B. Husemann; J. Iglesias-Páramo; V. Kalinova; A. R. Lopez-Sanchez; R. A. Marino; I. Márquez; J. Masegosa; D. Mast; J. Méndez-Abreu; A. Mendoza

Various different physical processes contribute to the star formation and stellar mass assembly histories of galaxies. One important approach to understanding the significance of these different processes on galaxy evolution is the study of the stellar population content of todays galaxies in a spatially resolved manner. The aim of this paper is to characterize in detail the radial structure of stellar population properties of galaxies in the nearby universe, based on a uniquely large galaxy sample, considering the quality and coverage of the data. The sample under study was drawn from the CALIFA survey and contains 300 galaxies observed with integral field spectroscopy. These cover a wide range of Hubble types, from spheroids to spiral galaxies, while stellar masses range from M_* ∼ 10^9 to 7 x 10^11 M_⨀. We apply the fossil record method based on spectral synthesis techniques to recover the following physical properties for each spatial resolution element in our target galaxies: the stellar mass surface density (μ_*), stellar extinction (A_V), light-weighted and mass-weighted ages ( _L, _M), and mass-weighted metallicity ( _M). To study mean trends with overall galaxy properties, the individual radial profiles are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd). We confirm that more massive galaxies are more compact, older, more metal rich, and less reddened by dust. Additionally, we find that these trends are preserved spatially with the radial distance to the nucleus. Deviations from these relations appear correlated with Hubble type: earlier types are more compact, older, and more metal rich for a given M-star, which is evidence that quenching is related to morphology, but not driven by mass. Negative gradients of _L are consistent with an inside-out growth of galaxies, with the largest _L gradients in Sb-Sbc galaxies. Further, the mean stellar ages of disks and bulges are correlated and with disks covering a wider range of ages, and late-type spirals hosting younger disks. However, age gradients are only mildly negative or flat beyond R∼2 HLR (half light radius), indicating that star formation is more uniformly distributed or that stellar migration is important at these distances. The gradients in stellar mass surface density depend mostly on stellar mass, in the sense that more massive galaxies are more centrally concentrated. Whatever sets the concentration indices of galaxies obviously depends less on quenching/morphology than on the depth of the potential well. There is a secondary correlation in the sense that at the same M_* early-type galaxies have steeper gradients. The μ_* gradients outside 1 HLR show no dependence on Hubble type. We find mildly negative _M gradients, which are shallower than predicted from models of galaxy evolution in isolation. In general, metallicity gradients depend on stellar mass, and less on morphology, hinting that metallicity is affected by both - the depth of the potential well and morphology/quenching. Thus, the largest _M gradients occur in Milky Way-like Sb-Sbc galaxies, and are similar to those measured above the Galactic disk. Sc spirals show flatter _M gradients, possibly indicating a larger contribution from secular evolution in disks. The galaxies from the sample have decreasing-outward stellar extinction; all spirals show similar radial profiles, independent from the stellar mass, but redder than E and S0. Overall, we conclude that quenching processes act in manners that are independent of mass, while metallicity and galaxy structure are influenced by mass-dependent processes.


Monthly Notices of the Royal Astronomical Society | 2006

The co-evolution of the obscured quasar PKS 1549−79 and its host galaxy: evidence for a high accretion rate and warm outflow

J. Holt; C. N. Tadhunter; R. Morganti; M.J. Bellamy; R. M. González Delgado; A. K. Tzioumis; K. J. Inskip

We use deep optical, infrared and radio observations to explore the symbiosis between nuclear activity and galaxy evolution in the southern compact radio source PKS 1549-79 (z = 0.1523). The optical imaging observations reveal the presence of tidal tail features which provide strong evidence that the host galaxy has undergone a major merger in the recent past. The merger hypothesis is further supported by the detection of a young stellar population (YSP), which, on the basis of spectral synthesis modelling of our deep Very Large Telescope (VLT) optical spectra, was formed 50-250 Myr ago and makes up a significant fraction of the total stellar mass (1-30 per cent). Despite the core-jet structure of the radio source, which is consistent with the idea that the jet is pointing close to our line of sight, our HI 21-cm observations reveal significant HI absorption associated with both the core and the jet. Moreover, the luminous, quasar-like active galactic nucleus (AGN) (MV 6.4) at optical wavelengths and show many properties in common with narrow-line Seyfert 1 galaxies (NLS1), including relatively narrow permitted lines [ full width at half-maximum (FWHM) similar to 1940 km s(-1)], highly blueshifted [O III]lambda lambda 5007,4959 lines (Delta V similar to 680 km s(-1)) and evidence that the putative supermassive black hole is accreting at a high Eddington ratio (0.3 3000 K.


Astronomy and Astrophysics | 2014

The star formation history of CALIFA galaxies: Radial structures

R. M. González Delgado; Emmanuelle Perez; R. Cid Fernandes; R. García-Benito; A. L. de Amorim; S. F. Sánchez; B. Husemann; C. Cortijo-Ferrero; R. López Fernández; P. Sánchez-Blázquez; S. Bekeraite; C. J. Walcher; J. Falcón-Barroso; Anna Gallazzi; G. van de Ven; J. Alves; Joss Bland-Hawthorn; Robert C. Kennicutt; D. Kupko; Mariya Lyubenova; D. Mast; M. Mollá; R. A. Marino; A. Quirrenbach; J. M. Vílchez; L. Wisotzki

We have studied the radial structure of the stellar mass surface density (μ∗) and stellar population age as a function of the total stellar mass and morphology for a sample of 107 galaxies from the CALIFA survey. We applied the fossil record method based on spectral synthesis techniques to recover the star formation history (SFH), resolved in space and time, in spheroidal and disk dominated galaxies with masses from 10^9 to 10^12 M_⊙. We derived the half-mass radius, and we found that galaxies are on average 15% more compact in mass than in light. The ratio of half-mass radius to half-light radius (HLR) shows a dual dependence with galaxy stellar mass; it decreases with increasing mass for disk galaxies, but is almost constant in spheroidal galaxies. In terms of integrated versus spatially resolved properties, we find that the galaxy-averaged stellar population age, stellar extinction, and μ_∗ are well represented by their values at 1 HLR. Negative radial gradients of the stellar population ages are present in most of the galaxies, supporting an inside-out formation. The larger inner (≤1 HLR) age gradients occur in the most massive (10^11 M_⊙) disk galaxies that have the most prominent bulges; shallower age gradients are obtained in spheroids of similar mass. Disk and spheroidal galaxies show negative μ∗ gradients that steepen with stellar mass. In spheroidal galaxies, μ∗ saturates at a critical value (~7 × 10^2 M_⊙/pc^2 at 1 HLR) that is independent of the galaxy mass. Thus, all the massive spheroidal galaxies have similar local μ_∗ at the same distance (in HLR units) from the nucleus. The SFH of the regions beyond 1 HLR are well correlated with their local μ_∗, and follow the same relation as the galaxy-averaged age and μ_∗; this suggests that local stellar mass surface density preserves the SFH of disks. The SFH of bulges are, however, more fundamentally related to the total stellar mass, since the radial structure of the stellar age changes with galaxy mass even though all the spheroid dominated galaxies have similar radial structure in μ_∗. Thus, galaxy mass is a more fundamental property in spheroidal systems, while the local stellar mass surface density is more important in disks.


The Astronomical Journal | 2008

The ALHAMBRA Survey: A Large Area Multimedium-Band Optical and Near-Infrared Photometric Survey

M. Moles; N. Benítez; J. A. L. Aguerri; Emilio J. Alfaro; Tom Broadhurst; J. Cabrera-Caño; Francisco J. Castander; J. Cepa; M. Cerviño; D. Cristóbal-Hornillos; Alberto Fernandez-Soto; R. M. González Delgado; L. Infante; I. Márquez; V. J. Martínez; J. Masegosa; A. del Olmo; J. Perea; F. Prada; J. M. Quintana; S. F. Sánchez

Here we describe the first results of the Advanced Large Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey, which provides cosmic tomography of the evolution of the contents of the universe over most of cosmic history. Our novel approach employs 20 contiguous, equal-width, medium-band filters covering from 3500 A to 9700 A, plus the standard JHKs near-infrared (NIR) bands, to observe a total area of 4 deg2 on the sky. The optical photometric system has been designed to maximize the number of objects with accurate classification by spectral energy distribution type and redshift, and to be sensitive to relatively faint emission features in the spectrum. The observations are being carried out with the Calar Alto 3.5 m telescope using the wide-field cameras in the optical, Large Area Imager for Calar Alto, and in the NIR, Omega-2000. The first data confirm that we are reaching the expected magnitude limits (for a total of 100 ks integration time per pointing) of AB ≤ 25 mag (for an unresolved object, signal-to-noise ratio = 5) in the optical filters from the blue to 8300 A, and from AB = 24.7 to 23.4 for the redder ones. The limit in the NIR, for a total of 15 ks exposure time per pointing, is (in the Vega system) Ks ≈ 20 mag, H≈ 21 mag, J≈ 22 mag. Some preliminary results are presented here to illustrate the capabilities of the ongoing survey. We expect to obtain accurate redshift values, Δz/(1 + z) ≤ 0.03 for about five ×105 galaxies with I ≤ 25 (60% completeness level), and z med = 0.74. This accuracy, together with the homogeneity of the selection function, will allow for the study of the redshift evolution of the large-scale structure, the galaxy population and its evolution with redshift, the identification of clusters of galaxies, and many other studies, without the need for any further follow-up. It will also provide targets for detailed studies with 10 m class telescopes. Given its area, spectral coverage, and its depth, apart from those main goals, the ALHAMBRA survey will also produce valuable data for galactic studies.

Collaboration


Dive into the R. M. González Delgado's collaboration.

Top Co-Authors

Avatar

R. García-Benito

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

I. Márquez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

E. Pérez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. A. L. Aguerri

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. Masegosa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. del Olmo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Cerviño

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Moles

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

C. J. Walcher

Institut d'Astrophysique de Paris

View shared research outputs
Researchain Logo
Decentralizing Knowledge