Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Michael van Dam is active.

Publication


Featured researches published by R. Michael van Dam.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Micro-chemical synthesis of molecular probes on an electronic microfluidic device

Pei Yuin Keng; Supin Chen; Huijiang Ding; Saman Sadeghi; Gaurav J. Shah; Alex Dooraghi; Michael E. Phelps; Nagichettiar Satyamurthy; Arion F. Chatziioannou; Chang-Jin “Cj” Kim; R. Michael van Dam

We have developed an all-electronic digital microfluidic device for microscale chemical synthesis in organic solvents, operated by electrowetting-on-dielectric (EWOD). As an example of the principles, we demonstrate the multistep synthesis of [18F]FDG, the most common radiotracer for positron emission tomography (PET), with high and reliable radio-fluorination efficiency of [18F]FTAG (88 ± 7%, n = 11) and quantitative hydrolysis to [18F]FDG (> 95%, n = 11). We furthermore show that batches of purified [18F]FDG can successfully be used for PET imaging in mice and that they pass typical quality control requirements for human use (including radiochemical purity, residual solvents, Kryptofix, chemical purity, and pH). We report statistical repeatability of the radiosynthesis rather than best-case results, demonstrating the robustness of the EWOD microfluidic platform. Exhibiting high compatibility with organic solvents and the ability to carry out sophisticated actuation and sensing of reaction droplets, EWOD is a unique platform for performing diverse microscale chemical syntheses in small volumes, including multistep processes with intermediate solvent-exchange steps.


Cancer Research | 2010

A Microfluidic Platform for Systems Pathology: Multiparameter Single-Cell Signaling Measurements of Clinical Brain Tumor Specimens

Jing Sun; Michael Masterman-Smith; Nicholas A. J. Graham; Jing Jiao; Jack Mottahedeh; Dan R. Laks; Minori Ohashi; Jason DeJesus; Ken-ichiro Kamei; Ki-Bum Lee; Hao Wang; Yi-Tsung Lu; Shuang Hou; Keyu Li; Max Liu; Nangang Zhang; Shutao Wang; Brigitte Angénieux; Eric R. Samuels; Jun Park; Dirk Williams; Vera Konkankit; David Nathanson; R. Michael van Dam; Michael E. Phelps; Hong Wu; Linda M. Liau; Paul S. Mischel; Jorge A. Lazareff; Harley I. Kornblum

The clinical practice of oncology is being transformed by molecular diagnostics that will enable predictive and personalized medicine. Current technologies for quantitation of the cancer proteome are either qualitative (e.g., immunohistochemistry) or require large sample sizes (e.g., flow cytometry). Here, we report a microfluidic platform-microfluidic image cytometry (MIC)-capable of quantitative, single-cell proteomic analysis of multiple signaling molecules using only 1,000 to 2,800 cells. Using cultured cell lines, we show simultaneous measurement of four critical signaling proteins (EGFR, PTEN, phospho-Akt, and phospho-S6) within the oncogenic phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. To show the clinical application of the MIC platform to solid tumors, we analyzed a panel of 19 human brain tumor biopsies, including glioblastomas. Our MIC measurements were validated by clinical immunohistochemistry and confirmed the striking intertumoral and intratumoral heterogeneity characteristic of glioblastoma. To interpret the multiparameter, single-cell MIC measurements, we adapted bioinformatic methods including self-organizing maps that stratify patients into clusters that predict tumor progression and patient survival. Together with bioinformatic analysis, the MIC platform represents a robust, enabling in vitro molecular diagnostic technology for systems pathology analysis and personalized medicine.


Physics in Medicine and Biology | 2009

Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip

Jennifer S. Cho; Richard Taschereau; Sebastian Olma; Kan Liu; Yi-Chun Chen; Clifton Kwang-Fu Shen; R. Michael van Dam; Arion F. Chatziioannou

This work proposes a novel method for quantitative imaging of radioactivity on microfluidic chips by using visible light emission from Čerenkov radiation. Čerenkov radiation is generated when charged particles travel through an optically transparent material with a velocity greater than that of light in that material. It has been observed at UCLA that microfluidic chips used for 18F-related radio-synthesis studies have shown unidentified visible light emissions. In this study, the origin of the light was investigated and its feasibility as a quantitative imaging source was tested.


The Journal of Nuclear Medicine | 2010

Design and Optimization of Coin-Shaped Microreactor Chips for PET Radiopharmaceutical Synthesis

Arkadij M. Elizarov; R. Michael van Dam; Young Shik Shin; Hartmuth C. Kolb; Henry C. Padgett; David Stout; Jenny Shu; Jiang Huang; Antoine Daridon; James R. Heath

An integrated elastomeric microfluidic device, with a footprint the size of a postage stamp, has been designed and optimized for multistep radiosynthesis of PET tracers. Methods: The unique architecture of the device is centered around a 5-μL coin-shaped reactor, which yields reaction efficiency and speed from a combination of high reagent concentration, pressurized reactions, and rapid heat and mass transfer. Its novel features facilitate mixing, solvent exchange, and product collection. New mixing mechanisms assisted by vacuum, pressure, and chemical reactions are exploited. Results: The architecture of the reported reactor is the first that has allowed batch-mode microfluidic devices to produce radiopharmaceuticals of sufficient quality and quantity to be validated by in vivo imaging. Conclusion: The reactor has the potential to produce multiple human doses of 18F-FDG; the most impact, however, is expected in the synthesis of PET radiopharmaceuticals that can be made only with low yields by currently available equipment.


Analytical Chemistry | 2012

On Chip Droplet Characterization: A Practical, High-Sensitivity Measurement of Droplet Impedance in Digital Microfluidics

Saman Sadeghi; Huijiang Ding; Gaurav J. Shah; Supin Chen; Pei Yuin Keng; Chang-Jin “Cj” Kim; R. Michael van Dam

We demonstrate a new approach to impedance measurement on digital microfluidics chips for the purpose of simple, sensitive, and accurate volume and liquid composition measurement. Adding only a single series resistor to existing AC droplet actuation circuits, the platform is simple to implement and has negligible effect on actuation voltage. To accurately measure the complex voltage across the resistor (and hence current through the device and droplet), the designed system is based on software-implemented lock-in amplification detection of the voltage drop across the resistor which filters out noise, enabling high-resolution and low-limit signal recovery. We observe picoliter sensitivity with linear correlation of voltage to volume extending to the microliter volumes that can be handled by digital microfluidic devices. Due to the minimal hardware, the system is robust and measurements are highly repeatable. The detection technique provides both phase and magnitude information of the real-time current flowing through the droplet for a full impedance measurement. The sensitivity and resolution of this platform enables it to distinguish between various liquids which, as demonstrated in this paper, could potentially be extended to quantify solute concentrations, liquid mixtures, and presence of analytes.


Molecular Imaging | 2011

Microfluidic-based 18F-labeling of biomolecules for immuno-positron emission tomography.

Kan Liu; Eric J. Lepin; Mingwei Wang; Feng Guo; Wei-Yu Lin; Yi-Chun Chen; Shannon J. Sirk; Sebastian Olma; Michael E. Phelps; Xing Zhong Zhao; Hsian-Rong Tseng; R. Michael van Dam; Anna M. Wu; Clifton Kwang-Fu Shen

Methods for tagging biomolecules with fluorine 18 as immuno–positron emission tomography (immunoPET) tracers require tedious optimization of radiolabeling conditions and can consume large amounts of scarce biomolecules. We describe an improved method using a digital microfluidic droplet generation (DMDG) chip, which provides computer-controlled metering and mixing of 18F tag, biomolecule, and buffer in defined ratios, allowing rapid scouting of reaction conditions in nanoliter volumes. The identified optimized conditions were then translated to bench-scale 18F labeling of a cancer-specific engineered antibody fragments, enabling microPET imaging of tumors in xenografted mice at 0.5 to 4 hours postinjection.


Lab on a Chip | 2012

Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips

Huijiang Ding; Saman Sadeghi; Gaurav J. Shah; Supin Chen; Pei Yuin Keng; Chang-Jin “Cj” Kim; R. Michael van Dam

Digital microfluidic chips provide a new platform for manipulating chemicals for multi-step chemical synthesis or assays at the microscale. The organic solvents and reagents needed for these applications are often volatile, sensitive to contamination, and wetting, i.e. have contact angles of <90° even on the highly hydrophobic surfaces (e.g., Teflon® or Cytop®) typically used on digital microfluidic chips. Furthermore, often the applications dictate that the processes are performed in a gas environment, not allowing the use of a filler liquid (e.g., oil). These properties pose challenges for delivering controlled volumes of liquid to the chip. An automated, simple, accurate and reliable method of delivering reagents from sealed, off-chip reservoirs is presented here. This platform overcomes the issues of evaporative losses of volatile solvents, cross-contamination, and flooding of the chip by combining a syringe pump, a simple on-chip liquid detector and a robust interface design. The impedance-based liquid detection requires only minimal added hardware to provide a feedback signal to ensure accurate volumes of volatile solvents are introduced to the chip, independent of time delays between dispensing operations. On-demand dispensing of multiple droplets of acetonitrile, a frequently used but difficult to handle solvent due to its wetting properties and volatility, was demonstrated and used to synthesize the positron emission tomography (PET) probe [(18)F]FDG reliably.


Archive | 2012

Emerging Technologies for Decentralized Production of PET Tracers

Pei Yuin Keng; Melissa Esterby; R. Michael van Dam

The use of Positron Emission Tomography (PET) to monitor biological processes in vivo (Michael E. Phelps 2000) has seen dramatic growth and acceptance in the research, pharmaceutical, and medical communities over the last few decades, with clinical PET growing from ~900,000 scans in 2004 to over 1.74 million in 2010 in the United States alone; growth in foreign markets is comparable (Muschlitz 2011). These scans are conducted in ~2,200 clinical PET centers, all providing molecular imaging diagnostics of the biology of various diseases, including cancer, Alzheimer’s, and Parkinson’s. Additionally, PET is a powerful tool in the drug discovery and development process, providing in vivo pharmacokinetics and pharmacodynamics using radiolabeled versions of new drugs. A portion of clinical PET centers support drug trials carried out by pharmaceutical and biotech companies by synthesizing these molecules. PET biomarkers can also be used to select the best treatment for individual patients. Patient stratification via PET is anticipated to increase the quality of therapeutics available to patients with a concomitant decrease in the cost of bringing these therapeutics to market. (In the current randomized approach to patient selection, ~75% of patients do not have an efficacious response to treatment.) Furthermore, PET has been widely used in preclinical research and its use in cell cultures (Vu et al. 2011) and animal models is growing dramatically due to the recent advent of preclinical PET imaging systems that are easy-to-use, compact, and affordable (Zhang et al. 2010). Coupled with the Critical Path Initiative of the FDA to partner a biomarker with each drug in clinical trials, as well as the ongoing technetium (99mTc) shortage affecting single photo emission computed tomography (SPECT) imaging, there is an even greater demand for PET, especially so given its superior sensitivity and image quality.


Journal of the American Chemical Society | 2015

Titania-catalyzed radiofluorination of tosylated precursors in highly aqueous medium.

Maxim Sergeev; Federica Morgia; Mark Lazari; Christopher Wang; R. Michael van Dam

Nucleophilic radiofluorination is an efficient synthetic route to many positron-emission tomography (PET) probes, but removal of water to activate the cyclotron-produced [(18)F]fluoride has to be performed prior to reaction, which significantly increases overall radiolabeling time and causes radioactivity loss. In this report, we demonstrate the possibility of (18)F-radiofluorination in highly aqueous medium. The method utilizes titania nanoparticles, 1:1 (v/v) acetonitrile-thexyl alcohol solvent mixture, and tetra-n-butylammonium bicarbonate as a phase-transfer agent. Efficient radiolabeling is directly performed with aqueous [(18)F]fluoride without the need for a drying/azeotroping step to significantly reduce radiosynthesis time. High radiochemical purity of the target compound is also achieved. The substrate scope of the synthetic strategy is demonstrated with a range of aromatic, aliphatic, and cycloaliphatic tosylated precursors.


Applied Radiation and Isotopes | 2013

Reusable electrochemical cell for rapid separation of [18F]fluoride from [18O]water for flow-through synthesis of 18F-labeled tracers

Saman Sadeghi; Vincent Liang; Shilin Cheung; Suh Woo; Curtis Wu; Jimmy Ly; Yuliang Deng; Mark Eddings; R. Michael van Dam

A brass-platinum electrochemical micro-flow cell was developed to extract [(18)F]fluoride from an aqueous solution and release it into an organic-based solution, suitable for subsequent radio-synthesis, in a fast and reliable manner. This cell does not suffer electrode erosion and is thus reusable while operating faster by enabling increased voltages. By optimizing temperature, trapping and release potentials, flow rates, and electrode materials, an overall [(18)F]fluoride trapping and release efficiency of 84 ± 5% (n=7) was achieved. X-ray photoelectron spectroscopy (XPS) was used to analyze electrode surfaces of various metal-metal systems and the findings were correlated with the performance of the electrochemical cell. To demonstrate the reactivity of the released [(18)F]fluoride, the cell was coupled to a flow-through reactor and automated synthesis of [(18)F]FDG with a repeatable decay-corrected yield of 56 ± 4% (n=4) was completed in < 15 min. A multi-human dose of 5.92GBq [(18)F]FDG was also demonstrated.

Collaboration


Dive into the R. Michael van Dam's collaboration.

Top Co-Authors

Avatar

Mark Lazari

University of California

View shared research outputs
Top Co-Authors

Avatar

Pei Yuin Keng

University of California

View shared research outputs
Top Co-Authors

Avatar

Supin Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Gaurav J. Shah

University of California

View shared research outputs
Top Co-Authors

Avatar

Saman Sadeghi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huijiang Ding

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge