R.N. Colvile
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R.N. Colvile.
Atmospheric Environment | 2001
R.N. Colvile; Emma J. Hutchinson; J.S Mindell; Rachel Warren
Transport first became a significant source of air pollution after the problems of sooty smog from coal combustion had largely been solved in western European and North American cities. Since then, emissions from road, air, rail and water transport have been partly responsible for acid deposition, stratospheric ozone depletion and climate change. Most recently, road traffic exhaust emissions have been the cause of much concern about the effects of urban air quality on human health and tropospheric ozone production. This article considers the variety of transport impacts on the atmospheric environment by reviewing three examples: urban road traffic and human health, aircraft emissions and global atmospheric change, and the contribution of sulphur emissions from ships to acid deposition. Each example has associated with it a different level of uncertainty, such that a variety of policy responses to the problems are appropriate, from adaptation through precautionary emissions abatement to cost-benefit analysis and optimised abatement. There is some evidence that the current concern for road transport contribution to urban air pollution is justified, but aircraft emissions should also give cause for concern given that air traffic is projected to continue to increase. Emissions from road traffic are being reduced substantially by the introduction of technology especially three-way catalysts and also, most recently, by local traffic reduction measures especially in western European cities. In developing countries and Eastern Europe, however, there remains the possibility of great increase in car ownership and use, and it remains to be seen whether these countries will adopt measures now to prevent transport-related air pollution problems becoming severe later in the 21st Century
Science of The Total Environment | 2001
H.S Adams; Mark J. Nieuwenhuijsen; R.N. Colvile; M.A.S McMullen; P Khandelwal
In order to investigate a specific area of short-term, non-occupational, human exposure to fine particulate air pollution, measurements of personal exposure to PM2.5 in transport microenvironments were taken in two separate field studies in central London, UK. A high flow gravimetric personal sampling system was used; operating at 16 l min−1; the sampler thus allowed for sufficient sample mass collection for accurate gravimetric analysis of short-term travel exposure levels over typical single commute times. In total, samples were taken on 465 journeys and 61 volunteers participated. In a multi-transport mode study, carried out over 3-week periods in the winter and in the summer, exposure levels were assessed along three fixed routes at peak and off-peak times of the day. Geometric means of personal exposure levels were 34.5 μg m−3 (G.S.D.=1.7, ns=40), 39.0 μg m−3 (G.S.D.=1.8, ns=36), 37.7 μg m−3 (G.S.D.=1.5, ns=42), and 247.2 μg m−3 (G.S.D.=1.3, ns=44) for bicycle, bus, car and Tube (underground rail system) modes, respectively, in the July 1999 (summer) measurement campaign. Corresponding levels in the February 2000 (winter) measurement campaign were 23.5 μg m−3 (G.S.D.=1.8, ns=56), 38.9 μg m−3 (G.S.D.=2.1, ns=32), 33.7 μg m−3 (G.S.D.=2.4, ns=12), and 157.3 μg m−3 (G.S.D.=3.3, ns=12), respectively. In a second study, exposure levels were measured for a group of 24 commuters travelling by bicycle, during August 1999, in order to assess how representative the fixed route studies were to a larger commuter population. The geometric mean exposure level was 34.2 μg m−3 (G.S.D.=1.9, ns=105). In the fixed-route study, the cyclists had the lowest exposure levels, bus and car were slightly higher, while mean exposure levels on the London Underground rail system were 3–8 times higher than the surface transport modes. There was significant between-route variation, most notably between the central route and the other routes. The fixed-route study exposure was similar in level and in variability to the ‘real’ commuters study, suggesting that the routes chosen and the number of samples taken provided a reasonably good estimate of the personal exposure levels in the transport microenvironments of Central London. This first comprehensive PM2.5 multi-mode transport user exposure assessment study in the UK also showed that mean personal exposure levels in road transport modes were approximately double that of the PM2.5 concentration at an urban background fixed site monitor.
Journal of Atmospheric Chemistry | 1994
Birgitta Svenningsson; Hans-Christen Hansson; Alfred Wiedensohler; Kevin J. Noone; John A. Ogren; A. Hallberg; R.N. Colvile
The hygroscopic growth of individual aerosol particles has been measured with a Tandem Differential Mobility Analyser. The hygroscopic growth spectra were analysed in terms of diameter change with increasing RH from ≤20% to 85%. The measurements were carried out during the GCE cloud experiment at Kleiner Feldberg, Taunus, Germany in October and November 1990.Two groups of particles with different hygroscopic growth were observed. The less-hygroscopic group had average growth factors of 1.11, 1.04 and 1.02 for particle diameters of 50, 150 and 300 nm, respectively. The more-hygroscopic group had average growth factors of 1.34, 1.34, and 1.37 for the same particle diameters. The average fraction of less-hygroscopic particles was about 50%. Estimates of the soluble fractions of the particles belonging to the two groups are reported.Hygroscopic growth spectra for total aerosol, interstitial aerosol and cloud drop residuals were measured. A comparison of these hygroscopic growths of individual aerosol particles provides clear evidence for the importance of hygroscopic growth in nucleation scavenging. The measured scavenged fraction of particles as a function of diameter can be explained by the hygroscopic growth spectra.
Atmospheric Environment | 1997
Birgitta Svenningsson; Hans-Christen Hansson; Bengt G. Martinsson; Alfred Wiedensohler; Erik Swietlicki; Sven Inge Cederfelt; Manfred Wendisch; Keith N. Bower; T. W. Choularton; R.N. Colvile
The size distributions and hygroscopic growth spectra of aerosol particles were measured during the GCE cloud experiment at Great Dun Fell in the Pennine Hills in northern England. Hygroscopic growth is defined as the particle diameter at 90% RH divided by the particle diameter at 10% RH. The fraction of the aerosol particles scavenged by cloud droplets as a function of particle size was also measured. The general aerosol type was a mixture of marine and aged anthropogenic aerosols. The Aitken and accumulation mode numbers (average ± 1 S.D.) were 1543 ± 1078 and 1023 ± 682 cm−3 respectively. The mean diameters were in the range 30–100 nm and 100–330 nm. The hygroscopic growth spectra were bimodal about half the time. The less-hygroscopic particles had average growth factors of 1.06, 1.06, 1.03, 1.03, and 1.03 for particle diameters of 50, 75, 110, 165, and 265 nm, respectively. For the more-hygroscopic particles of the same sizes, the average hygroscopic growth was 1.34, 1.37, 1.43, 1.47, and 1.53. The effects of ageing on the aerosol particle size distribution and on hygroscopic behaviour are discussed. The scavenged fraction of aerosol particles was a strong function of particle diameter. The diameter with 50% scavenging was in the range 90–220 nm. No tail of smaller particles activated to cloud drops was observed. A small tail of larger particles that remained in the interstitial aerosol can be explained by there being a small fraction of less-hygroscopic particles. A weak correlation between the integral dry particle diameter and the diameter with 50% scavenging was seen.
Atmospheric Environment | 1997
David L. Sedlak; Jürg Hoigné; Margaret M. David; R.N. Colvile; Elke Seyffer; K. Acker; Wolfgang Wiepercht; John A. Lind; S. Fuzzi
The role of iron and copper in the transformation of photooxidants (HO2/O2−) and pollutants in clouds was examined at a rural site (Great Dun Fell, U.K.). The observed concentrations of dissolved iron (60–1600 nM) and copper (4.2–31 nM) were lower than those previously reported at other locations. Measurement of the oxidation state of dissolved iron provided insight into the rates and mechanisms of cloudwater transformation reactions. Whenever the iron-containing aerosols were nucleated for more than several minutes prior to collection, measured iron oxidation states agreed with predictions based upon known rate constants for iron redox reactions. During daytime, the reduction of dissolved Fe(III) by HO2/O2− and Cu(I) or the photoreduction of Fe(Ill)-oxalato complexes resulted in the establishment of a steady state, with respect to iron oxidation states, in which more than 50% of the dissolved iron was present as Fe(II). At night, Fe(II) was slowly oxidized by H2O2 and O3.
Atmospheric Environment | 1999
A. Scaperdas; R.N. Colvile
Abstract The wind flow field around urban street-building configurations has an important influence on the microscale pollutant dispersion from road traffic, affecting overall dilution and creating localised spatial variations of pollutant concentration. As a result, the “representativeness” of air quality measurements made at different urban monitoring sites can be strongly dependent on the interaction of the local wind flow field with the street-building geometry surrounding the monitor. The present study is an initial attempt to develop a method for appraising the significance of air quality measurements from urban monitoring sites, using a general application computational fluid dynamics (CFD) code to simulate small-scale flow and dispersion patterns around real urban building configurations. The main focus of the work was to evaluate routine CO monitoring data collected by Westminster City Council at an intersection of street canyons at Marylebone Road, Central London. Many monitors in the UK are purposely situated at urban canyon intersections, which are thought to be local “hot spots” of pollutant emissions, however very limited information exists in the literature on the flow and dispersion patterns associated with them. With the use of simple CFD simulations and the analysis of available monitoring data, it was possible to gain insights into the effect of wind direction on the small-scale dispersion patterns at the chosen intersection, and how that can influence the data captured by a monitor. It was found that a change in wind direction could result in an increase or decrease of monitored CO concentration of up to 80%, for a given level of traffic emissions and meteorological conditions. Understanding and de-coupling the local effect of wind direction from monitoring data using the methods presented in this work could prove a useful new tool for urban monitoring data interpretation.
Journal of Atmospheric Chemistry | 1994
Wolfram Wobrock; D. Schell; R. Maser; W. Jaeschke; H.-W. Georgii; W. Wieprecht; B. G. Arends; J. J. Möls; G. P. A. Kos; S. Fuzzi; M. C. Facchini; G. Orsi; A. Berner; I. Solly; C. Kruisz; I. B. Svenningsson; Alfred Wiedensohler; Hans-Christen Hansson; John A. Ogren; Kevin J. Noone; A. Hallberg; S. Pahl; T. Schneider; P. Winkler; W. Winiwarter; R.N. Colvile; T. W. Choularton; Andrea I. Flossmann; Stephan Borrmann
An overview is given of the Kleiner Feldberg cloud experiment performed from 27 October until 13 November 1990. The experiment was carried out by numerous European research groups as a joint effort within the EUROTRAC-GCE project in order to study the interaction of cloud droplets with atmospheric trace constituents. After a description of the observational site and the measurements which were performed, the general cloud formation mechanisms encountered during the experiment are discussed. Special attention is given here to the process of moist adiabatic lifting. Furthermore, an overview is given regarding the pollutant levels in the gas phase, the particulate and the liquid phase, and some major findings are presented with respect to the experimental objectives. Finally, a first comparison attempts to put the results obtained during this campaign into perspective with the previous GCE field campaign in the Po Valley.
Atmospheric Environment | 1997
T. W. Choularton; R.N. Colvile; Keith N. Bower; Martin Gallagher; M. Wells; K.M. Beswick; B. G. Arends; J. J. Möls; G. P. A. Kos; S. Fuzzi; J. A. Lind; G. Orsi; M. C. Facchini; P. Laj; R. Gieray; P. Wieser; T. Engelhardt; A. Berner; C. Kruisz; Detlev Möller; K. Acker; W. Wieprecht; Jens Lüttke; K. Levsen; M. Bizjak; Hans-Christen Hansson; Sven Inge Cederfelt; Göran Frank; Besim Mentes; Bengt G. Martinsson
The 1993 Ground-based Cloud Experiment on Great Dun Fell used a wide range of measurements of trace gases, aerosol particles and cloud droplets at five sites to study their sources and sinks especially those in cloud. These measurements have been interpreted using a variety of models. The conclusions add to our knowledge of air pollution, acidification of the atmosphere and the ground, eutrophication and climate change. The experiment is designed to use the hill cap cloud as a flow-through reactor, and was conducted in varying levels of pollution typical of much of the rural temperate continental northern hemisphere in spring-time.
Atmospheric Environment | 1997
P. Laj; S. Fuzzi; M. C. Facchini; G. Orsi; A. Berner; C. Kruisz; Wolfram Wobrock; A. Hallberg; Keith N. Bower; Martin Gallagher; K.M. Beswick; R.N. Colvile; T. W. Choularton; P. Nason; B.M.R. Jones
Abstract The modification of physical and chemical properties of aerosols passing through clouds has received considerable attention over recent years. Some of these transformations are related to in-cloud chemical reactions, particularly the oxidation of sulphur dioxide (SO 2 ) to sulphate (SO 4 2− . The Great Dun Fell experiment provided an opportunity to investigate the connection between the chemistry within cloud droplets and the processing of an aerosol population. We have noted significant increases in SO 4 2− in the aerosol population downstream of the cloud compared to the aerosol entering the cloud. These increases are connected to both S(IV) oxidation in the liquid phase and to the entrainment of new air into the cloud, supplying reactants such as H 2 O 2 to the system. The addition of SO 4 2− mass to the aerosol is also associated with changes in the NH 4 + aerosol concentrations, possibly as a result of neutralisation of the acidified cloud droplets by NH 3 . The study was performed taking into account dynamical mixing of air masses as well as possible sampling artefacts.
Atmospheric Environment | 1997
P. Laj; S. Fuzzi; M. C. Facchini; J. A. Lind; G. Orsi; M. Preiss; R. Maser; W. Jaeschke; E. Seyffer; K. Acker; W. Wieprecht; Detlev Möller; B. G. Arends; J. J. Möls; R.N. Colvile; Martin Gallagher; K.M. Beswick; K.J. Hargreaves; Robert Storeton-West; Mark A. Sutton
Abstract Experimental data from the Great Dun Fell Cloud Experiment 1993 were used to investigate interactions between soluble gases and cloud droplets. Concentrations of H 2 O 2 , SO 2 , CH 3 COOOH, HCOOH, and HCHO were monitored at different sites within and downwind of a hill cap cloud and their temporal and spatial evolution during several cloud events was investigated. Significant differences were found between in-cloud and out-of-cloud concentrations, most of which could not be explained by simple dissolution into cloud droplets. Concentration patterns were analysed in relation to the chemistry of cloud droplets and the gas/liquid equilibrium. Soluble gases do not undergo similar behaviour: CH 3 COOH simply dissolves in the aqueous phase and is outgassed upon cloud dissipation; instead, SO 2 is consumed by its reaction with H 2 O 2 . The behaviour of HCOOH is more complex because there is evidence for in-cloud chemical production. The formation of HCOOH interferes with the odd hydrogen cycle by enhancing the liquid-phase production of H 2 O 2 . The H 2 O 2 concentration in cloud therefore results from the balance of consumption by oxidation of SO 2 in-cloud production, and the rate by which it is supplied to the system by entrainment of new air into the clouds.