R. N. Mishra
Ravenshaw University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. N. Mishra.
Physical Review C | 2016
R. N. Mishra; H. S. Sahoo; Prafulla K. Panda; N. Barik; T. Frederico
We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a modified quark meson coupling model where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to
Physical Review C | 2015
R. N. Mishra; Prafulla K. Panda; H. S. Sahoo; N. Barik; T. Frederico
\ensuremath{\sigma},\phantom{\rule{0.16em}{0ex}}\ensuremath{\omega}
SPIN | 2018
B. Pradhan; S.K. Goi; R. N. Mishra
, and
Chinese Journal of Physics | 2015
S. N. Jena; R. N. Mishra; P. K. Nanda; S. Sahoo
\ensuremath{\rho}
Solid State Communications | 2014
S.K. Das; R. N. Mishra; B.K. Roul
mesons through mean-field approximations. The effect of a nonlinear
Physical Review C | 2013
N. Barik; R. N. Mishra; D. K. Mohanty; Prafulla K. Panda; T. Frederico
\ensuremath{\omega}\text{\ensuremath{-}}\ensuremath{\rho}
Applied Physics A | 2014
S.K. Das; R. N. Mishra; B.K. Roul
term on the EOS is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of
Solid State Communications | 2016
B. Pradhan; S.K. Goi; R. N. Mishra
2\phantom{\rule{4pt}{0ex}}{\mathrm{M}}_{\ensuremath{\bigodot}}
Solid State Communications | 2016
B. Pradhan; S.K. Goi; Srikanta Behera; P.K. Parida; R. N. Mishra
for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear
arXiv: Nuclear Theory | 2018
H.S. Sahoo; R. N. Mishra; D. K. Mohanty; Prafulla K. Panda; N. Barik
\ensuremath{\omega}\text{\ensuremath{-}}\ensuremath{\rho}