R. Neri
National Radio Astronomy Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Neri.
Monthly Notices of the Royal Astronomical Society | 2005
T. R. Greve; F. Bertoldi; Ian Smail; R. Neri; S. C. Chapman; A. W. Blain; R. J. Ivison; R. Genzel; A. Omont; P. Cox; L. J. Tacconi; Jean-Paul Kneib
In this paper, we present results from an Institut de Radio Astronomie Millimetrique (IRAM) Plateau de Bure millimetre-wave Interferometer (PdBI) survey for carbon monoxide (CO) emission towards radio-detected submillimetre galaxies (SMGs) with known optical and near-infrared spectroscopic redshifts. Five sources in the redshift range z ∼ 1-3.5 were detected, nearly doubling the number of SMGs detected in CO. We summarize the properties of all 12 CO-detected SMGs, as well as six sources not detected in CO by our survey, and use this sample to explore the bulk physical properties of the submillimetre galaxy (SMG) population as a whole. The median CO line luminosity of the SMGs is = (3.8 ± 2.0) × 10 10 K km s -1 pc 2 . Using a CO-to-H 2 conversion factor appropriate for starburst galaxies, this corresponds to a molecular gas mass = (3.0 ± 1.6) x 10 10 M ○. within an ∼ 2 kpc radius, approximately 4 times greater than the most luminous local ultraluminous infrared galaxies (ULIRGs) but comparable to that of the most extreme high-redshift radio galaxies (HzRGs) and quasi-sellar objects (QSOs). The median CO FWHM linewidth is broad, (FWHM) = 780 ± 320 km s -1 , and the SMGs often have double-peaked line profiles, indicative of either a merger or a disc. From their median gas reservoirs (∼ 3 x 10 10 M ○. ) and star formation rates (≥ 700 M ○. yr -1 ), we estimate a lower limit on the typical gas-depletion time-scale of ≥ 40 Myr in SMGs. This is marginally below the typical age expected for the starbursts in SMGs and suggests that negative feedback processes may play an important role in prolonging the gas consumption time-scale. We find a statistically significant correlation between the far-infrared and CO luminosities of the SMGs, which extends the observed correlation for local ULIRGs to higher luminosities and higher redshifts. The non-linear nature of the correlation implies that SMGs have higher far-infrared to CO luminosity ratios and possibly higher star formation efficiencies (SFEs), than local ULIRGs. Assuming a typical CO source diameter of θ ∼ 0.5 arcsec (D ∼ 4kpc), we estimate a median dynamical mass of ≃ (1.2 ± 1.5) x 10 11 M ○. for the SMG sample. Both the total gas and stellar masses imply that SMGs are very massive systems, dominated by baryons in their central regions. The baryonic and dynamical properties of these systems mirror those of local giant ellipticals and are consistent with numerical simulations of the formation of the most massive galaxies. We have been able to impose a lower limit of ≥ 5 x 10 -6 Mpc -3 to the comoving number density of massive galaxies in the redshift range z ∼ 2-3.5, which is in agreement with results from recent spectroscopic surveys and the most recent model predictions.
Nature | 2013
Dominik A. Riechers; C. M. Bradford; D. L. Clements; C. D. Dowell; I. Perez-Fournon; R. J. Ivison; C. Bridge; A. Conley; Hai Fu; J. D. Vieira; J. L. Wardlow; Jae Calanog; A. Cooray; P. D. Hurley; R. Neri; J. Kamenetzky; James E. Aguirre; B. Altieri; V. Arumugam; Dominic J. Benford; M. Béthermin; J. J. Bock; D. Burgarella; A. Cabrera-Lavers; Sydney Chapman; P. Cox; James Dunlop; L. Earle; D. Farrah; P. Ferrero
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts—that is, increased rates of star formation—in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ∼5 (refs 2–4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A ‘maximum starburst’ converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
Science | 2010
M. Negrello; R. Hopwood; G. De Zotti; A. Cooray; A. Verma; J. J. Bock; David T. Frayer; M. A. Gurwell; A. Omont; R. Neri; H. Dannerbauer; L. Leeuw; Elizabeth J. Barton; Jeff Cooke; S. Kim; E. da Cunha; G. Rodighiero; P. Cox; D. G. Bonfield; M. J. Jarvis; S. Serjeant; R. J. Ivison; Simon Dye; I. Aretxaga; David H. Hughes; E. Ibar; Frank Bertoldi; I. Valtchanov; Stephen Anthony Eales; Loretta Dunne
Through a Lens Brightly Astronomical sources detected in the submillimeter range are generally thought to be distant, dusty galaxies undergoing a vigorous burst of star formation. They can be detected because the dust absorbs the light from stars and reemits it at longer wavelengths. Their properties are still difficult to ascertain, however, because the combination of interference from dust and the low spatial resolution of submillimeter telescopes prevents further study at other wavelengths. Using data from the Herschel Space Telescope, Negrello et al. (p. 800) showed that by searching for the brightest sources in a wide enough area in the sky it was possible to detect gravitationally lensed submillimeter galaxies with nearly full efficiency. Gravitational lensing occurs when the light of an astronomical object is deflected by a foreground mass. This phenomenon increases the apparent brightness and angular size of the lensed objects, making it easier to study sources that would be otherwise too faint to probe. Data from the Herschel Space Observatory unveils distant, dusty galaxies invisible to optical telescopes. Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.
Nature | 2010
A. M. Swinbank; Ian Smail; S. N. Longmore; A. I. Harris; A. J. Baker; C. De Breuck; Johan Richard; A. C. Edge; R. J. Ivison; R. Blundell; K. E. K. Coppin; P. Cox; M. A. Gurwell; Laura J. Hainline; M. Krips; A. Lundgren; R. Neri; Brian D. Siana; G. Siringo; Daniel P. Stark; David J. Wilner; J.D. Younger
Massive galaxies in the early Universe have been shown to be forming stars at surprisingly high rates. Prominent examples are dust-obscured galaxies which are luminous when observed at sub-millimetre wavelengths and which may be forming stars at a rate of 1,000 solar masses (M⊙) per year. These intense bursts of star formation are believed to be driven by mergers between gas-rich galaxies. Probing the properties of individual star-forming regions within these galaxies, however, is beyond the spatial resolution and sensitivity of even the largest telescopes at present. Here we report observations of the sub-millimetre galaxy SMMJ2135-0102 at redshift z = 2.3259, which has been gravitationally magnified by a factor of 32 by a massive foreground galaxy cluster lens. This magnification, when combined with high-resolution sub-millimetre imaging, resolves the star-forming regions at a linear scale of only 100 parsecs. We find that the luminosity densities of these star-forming regions are comparable to the dense cores of giant molecular clouds in the local Universe, but they are about a hundred times larger and 107 times more luminous. Although vigorously star-forming, the underlying physics of the star-formation processes at z ≈ 2 appears to be similar to that seen in local galaxies, although the energetics are unlike anything found in the present-day Universe.
Monthly Notices of the Royal Astronomical Society | 2013
M. Bothwell; Ian Smail; S. C. Chapman; R. Genzel; R. J. Ivison; L. J. Tacconi; S. Alaghband-Zadeh; Frank Bertoldi; A. W. Blain; Caitlin M. Casey; P. Cox; T. R. Greve; D. Lutz; R. Neri; A. Omont; A. M. Swinbank
We present the results from a survey of 12CO emission in 40 luminous sub-millimetre galaxies (SMGs), with 850-μm fluxes of S850 μm = 4–20 mJy, conducted with the Plateau de Bure Interferometer. We detect 12CO emission in 32 SMGs at z ∼ 1.2–4.1, including 16 SMGs not previously published. Using multiple 12CO line (Jup = 2–7) observations, we derive a median spectral line energy distribution for luminous SMGs. We report the discovery of a fundamental relationship between 12CO FWHM and 12CO line luminosity in high-redshift starbursts, which we interpret as a natural consequence of the baryon-dominated dynamics within the regions probed by our observations. We use far-infrared luminosities to assess the star formation efficiency in our SMGs, finding that the slope of the L′CO-LFIR relation is close to linear. We derive molecular gas masses, finding a mean gas mass of (5.3 ± 1.0) × 1010 M⊙. Combining these with dynamical masses, we determine the redshift evolution of the gas content of SMGs, finding that they do not appear to be significantly more gas rich than less vigorously star-forming galaxies at high redshifts. Finally, we collate X-ray observations, and study the interdependence of gas and dynamical properties of SMGs with their AGN activity and supermassive black hole masses (MBH), finding that SMGs lie significantly below the local MBH-σ relation.
web science | 2010
H. Engel; L. J. Tacconi; R. I. Davies; R. Neri; Ian Smail; S. C. Chapman; R. Genzel; P. Cox; T. R. Greve; R. J. Ivison; A. W. Blain; Frank Bertoldi; A. Omont
We analyze subarcsecond resolution interferometric CO line data for 12 submillimeter-luminous (S_(850 μm) ≥ 5 mJy) galaxies with redshifts between 1 and 3, presenting new data for 4 of them. Morphologically and kinematically, most of the 12 systems appear to be major mergers. Five of them are well-resolved binary systems, and seven are compact or poorly resolved. Of the four binary systems for which mass measurements for both separate components can be made, all have mass ratios of 1:3 or closer. Furthermore, comparison of the ratio of compact to binary systems with that observed in local ULIRGs indicates that at least a significant fraction of the compact submillimeter-luminous galaxies (SMGs) must also be late-stage mergers. In addition, the dynamical and gas masses we derive are most consistent with the lower end of the range of stellar masses published for these systems, favoring cosmological models in which SMGs result from mergers. These results all point to the same conclusion that most of the bright SMGs with L_(IR) ≳ 5 × 10^(12) L_☉ are likely major mergers.
Nature | 2003
Fabian Walter; Frank Bertoldi; C. L. Carilli; P. Cox; K. Y. Lo; R. Neri; Xiaohui Fan; A. Omont; Michael A. Strauss; K. M. Menten
Observations of molecular hydrogen in quasar host galaxies at high redshifts provide fundamental constraints on galaxy evolution, because it is out of this molecular gas that stars form. Molecular hydrogen is traced by emission from the carbon monoxide molecule, CO; cold H2 itself is generally not observable. Carbon monoxide has been detected in about ten quasar host galaxies with redshifts z > 2; the record-holder is at z = 4.69 (refs 1–3). Here we report CO emission from the quasar SDSS J114816.64 + 525150.3 (refs 5, 6) at z = 6.42. At that redshift, the Universe was only 1/16 of its present age, and the era of cosmic reionization was just ending. The presence of about 2 × 1010 M[circdot] of H2 in an object at this time demonstrates that molecular gas enriched with heavy elements can be generated rapidly in the youngest galaxies.
Nature | 2011
P. Capak; Dominik A. Riechers; N. Z. Scoville; C. L. Carilli; P. Cox; R. Neri; Brant Robertson; M. Salvato; E. Schinnerer; Lin Yan; Grant W. Wilson; M. S. Yun; F. Civano; M. Elvis; A. Karim; Bahram Mobasher; Johannes G. Staguhn
Massive clusters of galaxies have been found that date from as early as 3.9 billion years (3.9 Gyr; z = 1.62) after the Big Bang, containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter model predict that these systems should descend from ‘protoclusters’—early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies that can be observed as luminous quasars and starbursts. Observational evidence for this picture, however, is sparse because high-redshift protoclusters are rare and difficult to observe. Here we report a protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang. This cluster of massive galaxies extends over more than 13 megaparsecs and contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of more than 4 × 1011 solar masses of dark and luminous matter in this region, consistent with that expected from cosmological simulations for the earliest galaxy clusters.
Monthly Notices of the Royal Astronomical Society | 2012
Roberto Maiolino; Simona Gallerani; R. Neri; C. Cicone; Andrea Ferrara; R. Genzel; D. Lutz; E. Sturm; L. J. Tacconi; F. Walter; C. Feruglio; F. Fiore; E. Piconcelli
Most theoretical models invoke quasar driven outflows to que nch star formation in massive galaxies, and this feedback mechanism is required to account for the population of old and passive galaxies observed in the local universe. The discovery of massive, old and passive galaxies at z∼2, implies that such quasar feedback onto the host galaxy must have been at work very early on, close to the reionization epoch. We have observed the [CII]158µm transition in SDSSJ114816.64+525150.3 that, at z=6.4189, is one of the most distant quasars known. We detect broad wings of the line tracing a quasar-driven massive outflow. This is the most distant massive outflow ever detected and is likely tracing t he long sought quasar feedback, already at work in the early Universe. The outflow is marginal ly resolved on scales of∼16 kpc, implying that the outflow can really a ffect the whole galaxy, as required by quasar feedback models. The inferred outflow rate, ˙ M > 3500 M⊙ yr −1 , is the highest ever found. At this rate the outflow can clean the gas in the host galaxy, and therefore quench star formation, in a few million years.
The Astrophysical Journal | 2010
Ran Wang; C. L. Carilli; R. Neri; Dominik A. Riechers; Jeff Wagg; Fabian Walter; Frank Bertoldi; K. M. Menten; A. Omont; P. Cox; Xiaohui Fan
We report our new observations of redshifted carbon monoxide emission from six z ~ 6 quasars, using the IRAM Plateau de Bure Interferometer. CO (6-5) or (5-4) line emission was detected in all six sources. Together with two other previous CO detections, these observations provide unique constraints on the molecular gas emission properties in these quasar systems close to the end of the cosmic re-ionization. Complementary results are also presented for low-J CO lines observed at the Green Bank Telescope and the Very Large Array, and dust continuum from five of these sources with the SHARC-II bolometer camera at the Caltech Submillimeter Observatory. We then present a study of the molecular gas properties in our combined sample of eight CO-detected quasars at z ~ 6. The detections of high-order CO line emission in these objects indicates the presence of highly excited molecular gas, with estimated masses on the order of 10^(10) M_☉ within the quasar host galaxies. No significant difference is found in the gas mass and CO line width distributions between our z ~ 6 quasars and samples of CO-detected 1.4 ≤ z ≤ 5 quasars and submillimeter galaxies. Most of the CO-detected quasars at z ~ 6 follow the far-infrared-CO luminosity relationship defined by actively star-forming galaxies at low and high redshifts. This suggests that ongoing star formation in their hosts contributes significantly to the dust heating at FIR wavelengths. The result is consistent with the picture of galaxy formation co-eval with supermassive black hole (SMBH) accretion in the earliest quasar-host systems. We investigate the black hole-bulge relationships of our quasar sample, using the CO dynamics as a tracer for the dynamical mass of the quasar host. The median estimated black hole-bulge mass ratio is about 15 times higher than the present-day value of ~0.0014. This places important constraints on the formation and evolution of the most massive SMBH-spheroidal host systems at the highest redshift.