Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Neu is active.

Publication


Featured researches published by R. Neu.


Journal of Nuclear Materials | 2003

Key ITER plasma edge and plasma–material interaction issues

G. Federici; P. Andrew; P. Barabaschi; J.N. Brooks; R.P. Doerner; A. Geier; A. Herrmann; G. Janeschitz; K. Krieger; A. Kukushkin; A. Loarte; R. Neu; G. Saibene; M. Shimada; G. Strohmayer; M. Sugihara

Abstract Some of the remaining crucial plasma edge physics and plasma–material interaction issues of the ITER tokamak are discussed in this paper, using either modelling or projections of experimental results from existing tokamak operation or relevant laboratory simulations. The paper covers the following subject areas at issue in the design of the ITER device: (1) plasma thermal loads during Type I ELMs and disruptions, ensuing erosion effects and prospects for mitigating measures, (2) control of co-deposited tritium inventory when carbon is used even on small areas in the divertor near the strike points, (3) efficiency of edge and core fuelling for expected pedestal densities in ITER, and (4) erosion and impurity transport with a full tungsten divertor. Directions and priorities of future research are proposed to narrow remaining uncertainties in the above areas.


Physica Scripta | 2011

JET ITER-like wall—overview and experimental programme*

G. Matthews; M. Beurskens; S. Brezinsek; M Groth; E. Joffrin; A Loving; M Kear; M-L Mayoral; R. Neu; P Prior; V. Riccardo; F Rimini; M. Rubel; G. Sips; E Villedieu; P. de Vries; M L Watkins; Efda-Jet Contributors

This paper reports the successful installation of the JET ITER-like wall and the realization of its technical objectives. It also presents an overview of the planned experimental programme which has been optimized to exploit the new wall and other JET enhancements in 2011/12.


Physica Scripta | 2007

Overview of the ITER-like wall project

G. F. Matthews; P. Edwards; T. Hirai; M. Kear; A. Lioure; P. Lomas; A. Loving; C. P. Lungu; H. Maier; Ph. Mertens; D. Neilson; R. Neu; J. Paméla; V. Philipps; G. Piazza; V. Riccardo; M. Rubel; C. Ruset; E. Villedieu; M. Way

Work is in progress to completely replace, in 2008/9, the existing JET CFC tiles with a configuration of plasma facing materials consistent with the ITER design. The ITER-like wall (ILW) will be cr ...


Nuclear Fusion | 2010

Calculation and experimental test of the cooling factor of tungsten

T. Pütterich; R. Neu; R. Dux; A. D. Whiteford; M. O'Mullane; H. P. Summers

The cooling factor of W is evaluated using state of the art data for line radiation and an ionization balance which has been benchmarked with experiment. For the calculation of line radiation, level-resolved calculations were performed with the Cowan code to obtain the electronic structure and excitation cross sections ( plane-wave Born approximation). The data were processed by a collisional radiative model to obtain electron density dependent emissions. These data were then combined with the radiative power derived from recombination rates and bremsstrahlung to obtain the total cooling factor. The effect of uncertainties in the recombination rates on the cooling factor was studied and was identified to be of secondary importance. The new cooling factor is benchmarked, by comparisons of the line radiation with spectral measurements as well as with a direct measurement of the cooling factor. Additionally, a less detailed calculation using a configuration averaged model was performed. It was used to benchmark the level-resolved calculations and to improve the prediction on radiation power from line radiation for ionization stages which are computationally challenging. The obtained values for the cooling factor validate older predictions from the literature. Its ingredients and the absolute value are consistent with the existing experimental results regarding the value itself, the spectral distribution of emissions and the ionization equilibrium. A table of the cooling factor versus electron temperature is provided. Finally, the cooling factor is used to investigate the operational window of a fusion reactor with W as intrinsic impurity. The minimum value of nT tau(E), for which a thermonuclear burn is possible, is increased by 20% for a W concentration of 3.0 x 10(-5) compared with a plasma without any impurities, except for the He ash which is considered in both cases.


Plasma Physics and Controlled Fusion | 2010

Divertor power load feedback with nitrogen seeding in ASDEX Upgrade

A. Kallenbach; R. Dux; J. C. Fuchs; R. Fischer; B. Geiger; L. Giannone; A. Herrmann; T. Lunt; V. Mertens; R. M. McDermott; R. Neu; T. Pütterich; S. K. Rathgeber; V. Rohde; K. Schmid; J. Schweinzer; W. Treutterer

Feedback control of the divertor power load by means of nitrogen seeding has been developed into a routine operational tool in the all-tungsten clad ASDEX Upgrade tokamak. For heating powers above about 12?MW, its use has become inevitable to protect the divertor tungsten coating under boronized conditions. The use of nitrogen seeding is accompanied by improved energy confinement due to higher core plasma temperatures, which more than compensates the negative effect of plasma dilution by nitrogen on the neutron rate. This paper describes the technical details of the feedback controller. A simple model for its underlying physics allows the prediction of its behaviour and the optimization of the feedback gain coefficients used. Storage and release of nitrogen in tungsten surfaces were found to have substantial impact on the behaviour of the seeded plasma, resulting in increased nitrogen consumption with unloaded walls and a latency of nitrogen release over several discharges after its injection. Nitrogen is released from tungsten plasma facing components with moderate surface temperature in a sputtering-like process; therefore no uncontrolled excursions of the nitrogen wall release are observed. Overall, very stable operation of the high-Z tokamak is possible with nitrogen seeding, where core radiative losses are avoided due to its low atomic charge Z and a high ELM frequency is maintained.


Nuclear Fusion | 2007

Plasma?surface interaction, scrape-off layer and divertor physics: implications for ITER

B. Lipschultz; X. Bonnin; G. Counsell; A. Kallenbach; A. Kukushkin; K. Krieger; A.W. Leonard; A. Loarte; R. Neu; R. Pitts; T.D. Rognlien; J. Roth; C.H. Skinner; J. L. Terry; E. Tsitrone; D.G. Whyte; Stewart J. Zweben; N. Asakura; D. Coster; R.P. Doerner; R. Dux; G. Federici; M.E. Fenstermacher; W. Fundamenski; Ph. Ghendrih; A. Herrmann; J. Hu; S. I. Krasheninnikov; G. Kirnev; A. Kreter

Recent research in scrape-off layer (SOL) and divertor physics is reviewed; new and existing data from a variety of experiments have been used to make cross-experiment comparisons with implications for further research and ITER. Studies of the region near the separatrix have addressed the relationship of profiles to turbulence as well as the scaling of the parallel power flow. Enhanced low-field side radial transport is implicated as driving parallel flows to the inboard side. The medium-n nature of edge localized modes (ELMs) has been elucidated and new measurements have determined that they carry ~10?20% of the ELM energy to the far SOL with implications for ITER limiters and the upper divertor. The predicted divertor power loads for ITER disruptions are reduced while those to main chamber plasma facing components (PFCs) increase. Disruption mitigation through massive gas puffing is successful at reducing PFC heat loads. New estimates of ITER tritium retention have shown tile sides to play a significant role; tritium cleanup may be necessary every few days to weeks. ITERs use of mixed materials gives rise to a reduction of surface melting temperatures and chemical sputtering. Advances in modelling of the ITER divertor and flows have enhanced the capability to match experimental data and predict ITER performance.


Nuclear Fusion | 2010

Assessment of compatibility of ICRF antenna operation with full W wall in ASDEX Upgrade

Vl. V. Bobkov; F. Braun; R. Dux; A. Herrmann; L. Giannone; A. Kallenbach; A. Krivska; H. W. Müller; R. Neu; Jean-Marie Noterdaeme; T. Pütterich; V. Rohde; J. Schweinzer; A. C. C. Sips; I. Zammuto

The compatibility of ICRF (ion cyclotron range of frequencies) antenna operation with high-Z plasma facing components is assessed in ASDEX Upgrade (AUG) with its tungsten (W) first wall.The mechanism of ICRF-related W sputtering was studied by various diagnostics including the local spectroscopic measurements of W sputtering yield YW on antenna limiters. Modification of one antenna with triangular shields, which cover the locations where long magnetic field lines pass only one out of two (0π)-phased antenna straps, did not influence the locally measured YW values markedly. In the experiments with antennas powered individually, poloidal profiles of YW on limiters of powered antennas show high YW close to the equatorial plane and at the very edge of the antenna top. The YW-profile on an unpowered antenna limiter peaks at the location projecting to the top of the powered antenna.An interpretation of the YW measurements is presented, assuming a direct link between the W sputtering and the sheath driving RF voltages deduced from parallel electric near-field (E||) calculations and this suggests a strong E|| at the antenna limiters. However, uncertainties are too large to describe the YW poloidal profiles.In order to reduce ICRF-related rise in W concentration CW, an operational approach and an approach based on calculations of parallel electric fields with new antenna designs are considered. In the operation, a noticeable reduction in YW and CW in the plasma during ICRF operation with W wall can be achieved by (a) increasing plasma–antenna clearance; (b) strong gas puffing; (c) decreasing the intrinsic light impurity content (mainly oxygen and carbon in AUG). In calculations, which take into account a realistic antenna geometry, the high E|| fields at the antenna limiters are reduced in several ways: (a) by extending the antenna box and the surrounding structures parallel to the magnetic field; (b) by increasing the average strap–box distance, e.g. by increasing the number of toroidally distributed straps; (c) by a better balance of (0π)-phased contributions to RF image currents.


Nuclear Fusion | 2009

Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

A. Kallenbach; R. Dux; M. Mayer; R. Neu; T. Pütterich; V. Bobkov; J. C. Fuchs; T. Eich; L. Giannone; O. Gruber; A. Herrmann; L. D. Horton; C. F. Maggi; H. Meister; H. W. Müller; V. Rohde; A. C. C. Sips; A. Stäbler; J. Stober

After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H?L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (?10?MW?m?2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved energy confinement, as well as in smaller ELMs.


Plasma Physics and Controlled Fusion | 2002

Impurity behaviour in the ASDEX Upgrade divertor tokamak with large area tungsten walls

R. Neu; R. Dux; A. Geier; A. Kallenbach; R. Pugno; V. Rohde; D. Bolshukhin; J. C. Fuchs; O. Gehre; O. Gruber; J. Hobirk; M. Kaufmann; K. Krieger; Martin Laux; C. F. Maggi; H. Murmann; J. Neuhauser; F. Ryter; A. C. C. Sips; A. Stäbler; J. Stober; W. Suttrop; H. Zohm

At the central column of ASDEX Upgrade, an area of 5.5 m2 of graphite tiles was replaced by tungsten-coated tiles representing about two-thirds of the total area of the central column. No negative influence on the plasma performance was found, except for internal transport barrier limiter discharges. The tungsten influx ΓW stayed below the detection limit only during direct plasma wall contact or for reduced clearance in divertor discharges spectroscopic evidence for ΓW could be found. From these observations a penetration factor of the order of 1% and effective sputtering yields of about 10-3 could be derived, pointing to a strong contribution by light intrinsic impurities to the total \mbox{W-sputtering}. The tungsten concentrations ranged from below 10-6 up to a few times 10-5. Generally, in discharges with increased density peaking, a tendency for increased central tungsten concentrations or even accumulation was observed. Central heating (mostly) by ECRH led to a strong reduction of the central impurity content, accompanied by a very benign reduction of the energy confinement. The observations suggest that the W-source strength plays only an inferior role for the central W-content compared to the transport, since in the discharges with increased W-concentration neither an increase in the W-influx nor a change in the edge parameters was observed. In contrast, there is strong experimental evidence, that the central impurity concentration can be controlled externally by central heating.


Nuclear Fusion | 2003

ELM frequency control by continuous small pellet injection in ASDEX Upgrade

P. T. Lang; J. Neuhauser; L. D. Horton; T. Eich; L. Fattorini; J. C. Fuchs; O. Gehre; A. Herrmann; P. Ignacz; M. Jakobi; S. Kalvin; M. Kaufmann; G. Kocsis; B. Kurzan; C. F. Maggi; M. E. Manso; M. Maraschek; V. Mertens; A. Mück; H. Murmann; R. Neu; I. Nunes; D. Reich; M. Reich; S. Saarelma; W. Sandmann; J. Stober; U. Vogl

Injection of cryogenic deuterium pellets has been successfully applied in ASDEX Upgrade for external edge localized mode (ELM) frequency control in type-I ELMy H-mode discharge scenarios. A pellet velocity of 560 m s−1 and a size of about 6 × 1019 D-atoms was selected for technical reasons, although even lower masses were found sufficient to trigger ELMs. A moderate repetition rate close to 20 Hz was chosen to avoid over-fuelling of the core plasma. Pellet sequences of up to 4 s duration were injected into discharges close to the L–H threshold, intrinsically developing large compound ELMs at a rate of 3 Hz. With pellet injection, these large ELMs were completely replaced by smaller type-I ELMs at the much higher pellet frequency, accompanied by a slight increase of density and even of stored energy. This external ELM control could be repeatedly switched on and off by just interrupting the pellet train. ELMs were triggered in less than 200 µs after pellet arrival at the plasma edge, at which time only a fraction of the pellet has been ablated, forming a rather localized, three-dimensional plasmoid, which drives the edge unstable well before the deposited mass is spread toroidally. The pellet controlled case has also been compared with a discharge at a somewhat lower density, but with otherwise rather similar data, developing spontaneous 20 Hz type-I ELMs. Despite the different trigger mechanisms, the general ELM features turn out to be qualitatively similar, possibly because of the similarity of the two cases in terms of ELM relevant parameters. The scaling with background plasma, heating power, pellet launch parameters, etc over a larger range still remains to be investigated.

Collaboration


Dive into the R. Neu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. W. Coenen

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge