R. Ocampo-Pérez
Universidad Autónoma de San Luis Potosí
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Ocampo-Pérez.
Chemosphere | 2013
J. Rivera-Utrilla; M. Sánchez-Polo; M.A. Ferro-García; G. Prados-Joya; R. Ocampo-Pérez
The main objective of this study was to conduct an exhaustive review of the literature on the presence of pharmaceutical-derived compounds in water and on their removal. The most representative pharmaceutical families found in water were described and related water pollution issues were analyzed. The performances of different water treatment systems in the removal of pharmaceuticals were also summarized. The water treatment technologies were those based on conventional systems (chlorine, chlorine dioxide, wastewater treatment plants), adsorption/bioadsorption on activated carbon (from lotus stalks, olive-waste cake, coal, wood, plastic waste, cork powder waste, peach stones, coconut shell, rice husk), and advanced oxidation processes by means of ozonation (O₃, O₃/H₂O₂, O₃/activated carbon, O₃/biological treatment), photooxidation (UV, UV/H₂O₂, UV/K₂S₂O₈, UV/TiO₂, UV/H₂O₂/TiO₂, UV/TiO₂/activated carbon, photo-Fenton), radiolysis (e-Beam, ⁶⁰Co, ¹³⁷Cs. Additives used: H₂O₂, SO₃²⁻, HCO₃⁻, CH₃₋OH, CO₃²⁻, or NO₃⁻), and electrochemical processes (Electrooxidation without and with active chlorine generation). The effect of these treatments on pharmaceutical compounds and the advantages and disadvantages of different methodologies used were described. The most important parameters of the above water treatment systems (experimental conditions, removal yield, pharmaceutical compound mineralization, TOC removal, toxicity evolution) were indicated. The key publications on pharmaceutical removal from water were summarized.
Journal of Environmental Management | 2012
Mahmoud M. Abdel daiem; J. Rivera-Utrilla; R. Ocampo-Pérez; J.D. Méndez-Díaz; M. Sánchez-Polo
This article describes the most recent methods developed to remove phthalic acid esters (PAEs) from water, wastewater, sludge, and soil. In general, PAEs are considered to be endocrine disrupting chemicals (EDCs), whose effects may not appear until long after exposure. There are numerous methods for removing PAEs from the environment, including physical, chemical and biological treatments, advanced oxidation processes and combinations of these techniques. This review largely focuses on the treatment of PAEs in aqueous solutions but also reports on their treatment in soil and sludge, as well as their effects on human health and the environment.
Journal of Environmental Management | 2013
J. Rivera-Utrilla; C.V. Gómez-Pacheco; M. Sánchez-Polo; Jesús J. López-Peñalver; R. Ocampo-Pérez
The objective of this study was to analyze the behavior of activated carbons with different chemical and textural natures in the adsorption of three tetracyclines (TCs) (tetracycline, oxytetracycline, and chlortetracycline). We also assessed the influence of the solution pH and ionic strength on the adsorption of these compounds and studied their removal by the combined use of microorganisms and activated carbon (bioadsorption). Sludge-derived materials were also used to remove TC from water. The capacity of these materials to adsorb TC was very high and was much greater than that of commercial activated carbon. This elevated adsorption capacity (512.1-672.0xa0mg/g) is explained by the high tendency of TC to form complex ions with some of the metal ions present in these materials. The medium pH and presence of electrolytes considerably affected TCs adsorption on commercial activated carbon. These results indicate that electrostatic adsorbent-adsorbate interactions play an important role in TC adsorption processes when conducted at pH values that produce TC deprotonation. The presence of bacteria during the TCs adsorption process decreases their adsorption/bioadsorption on the commercial activated carbon, weakening interactions between the adsorbate and the microfilm formed on the carbon surface. The adsorptive capacity was considerably lower in dynamic versus static regime, attributable to problems of TC diffusion into carbon pores and the shorter contact time between adsorbate and adsorbent.
Journal of Colloid and Interface Science | 2011
R. Ocampo-Pérez; R. Leyva-Ramos; Jovita Mendoza-Barron; Rosa M. Guerrero-Coronado
The concentration decay curves for the adsorption of phenol on organobentonite were obtained in an agitated tank batch adsorber. The experimental adsorption rate data were interpreted with diffusional models as well as first-order, second-order and Langmuir kinetic models. The surface diffusion model adjusted the data quite well, revealing that the overall rate of adsorption was controlled by surface diffusion. Furthermore, the surface diffusion coefficient increased raising the mass of phenol adsorbed at equilibrium and was independent of the particle diameter in the range 0.042-0.0126 cm. It was demonstrated that the overall rate of adsorption was essentially not affected by the external mass transfer. The second-order and the Langmuir kinetic models fitted the experimental data quite well; however, the kinetic constants of both models varied without any physical meaning while increasing the particle size and the mass of phenol adsorbed at equilibrium.
Science of The Total Environment | 2013
Nahum A. Medellin-Castillo; R. Ocampo-Pérez; R. Leyva-Ramos; M. Sánchez-Polo; J. Rivera-Utrilla; J.D. Méndez-Díaz
The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H(2)O(2), O(3)/AC, O(3)/H(2)O(2)) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1,080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between π electrons of its aromatic ring with π electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O(3)/H(2)O(2) and O(3)/AC systems is faster than that with only O(3). The technologies based on AOPs (UV/H(2)O(2), O(3)/H(2)O(2), O(3)/AC) significantly improve the degradation of DEP compared to conventional technologies (O(3), UV). AC adsorption, UV/H(2)O(2), O(3)/H(2)O(2), and O(3)/AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O(3)/AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity.
Science of The Total Environment | 2013
M. Sánchez-Polo; Mahmoud M. Abdel daiem; R. Ocampo-Pérez; J. Rivera-Utrilla; Antonio J. Mota
The aim of this study was to determine the effectiveness of oxidation processes based on UV radiation (UV, UV/H2O2, UV/K2S2O8, and UV/Na2CO3) to remove bisphenol A (BPA) from aqueous solution. Results showed that UV radiation was not effective to remove BPA from the medium. The addition of radical promoters such as H2O2, K2S2O8, or Na2CO3 markedly increased the effectiveness of UV radiation through the generation of HO(•), SO4(•-), or CO3(•-)/HCO3(•) radicals, respectively. The reaction rate constants between BPA and HO(•), SO4(•-), and CO3(•-)/HCO3(•) radicals were k(HO(•)BPA)=1.70±0.21×10(10)M(-1)s(-1), k(SO4(•-)BPA)=1.37±0.15×10(9)M(-1)s(-1) and k(CO3(•-)/HCO3(•)BPA)=3.89±0.09×10(6)M(-1)s(-1), respectively. The solution pH had a major effect on BPA degradation with the UV/H2O2 system, followed by UV/K2S2O8, and UV/Na2CO3 systems. All oxidation systems in this study showed 100% effectiveness to remove BPA from wastewater, due to its large content of natural organic matter (NOM), which can absorb UV radiation and generate excited triplet states ((3)NOM*) and various reactive oxygen species. With all three systems, the total organic carbon in the medium was markedly decreased after 5 min of treatment. The toxicity of byproducts was higher than that of BPA when using UV/H2O2, similar to that of BPA with the UV/Na2CO3 system, and lower than that of BPA after 40 min of treatment with the UV/K2S2O8 system.
Journal of Colloid and Interface Science | 2014
D.H. Carrales-Alvarado; R. Ocampo-Pérez; R. Leyva-Ramos; J. Rivera-Utrilla
The adsorption of the antibiotic metronidazole (MNZ) on activated carbon (F400), activated carbon cloth (ACF), mesoporous activated carbon (CMK-3), and carbon nanotubes (MWCNT) was investigated in this work. The effect of the adsorbent-adsorbate interactions as well as the operating conditions (ionic strength, solution pH, temperature, chemical modification of the adsorbents by HNO3 treatment, and water matrix) on the adsorption capacity were analyzed to substantiate the adsorption mechanism. The adsorption capacity markedly varied as function of the carbon material, decreasing in the following order: F400>ACF>F400-HNO3>CMK-3>MWCNT>MWCNT-HNO3, and depended not only on their surface area and pore size distribution, but also on their chemical nature. The adsorption of MNZ was influenced by the solution pH, but was not significantly affected by the ionic strength and temperature. The adsorption of MNZ was enhanced when the MNZ solutions were prepared using wastewater. Therefore, the electrolytes present in the wastewater cooperated rather than competed with the MNZ molecules for the adsorption sites. Desorption equilibrium data of MNZ on all carbon materials demonstrated that the adsorption was reversible corroborating the weakness of the adsorbent-adsorbate interactions.
Journal of Colloid and Interface Science | 2012
R. Ocampo-Pérez; Mahmoud M. Abdel daiem; J. Rivera-Utrilla; J.D. Méndez-Díaz; M. Sánchez-Polo
The overall adsorption rate of single micropollutants present in landfill leachates such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two commercial activated carbons was studied. The experimental data obtained were interpreted by using a diffusional model (PVSDM) that considers external mass transport, intraparticle diffusion, and adsorption on an active site. Furthermore, the concentration decay data were interpreted by using kinetics models. Results revealed that PVSDM model satisfactorily fitted the experimental data of adsorption rate on activated carbon. The tortuosity factor of the activated carbons used ranged from 2 to 4. The contribution of pore volume diffusion represented more than 92% of intraparticle diffusion confirming that pore volume diffusion is the controlling mechanism of the overall rate of adsorption and surface diffusion can be neglected. The experimental data were satisfactorily fitted the kinetic models. The second-order kinetic model was better fitted the experimental adsorption data than the first-order model.
Journal of Environmental Management | 2016
J.V. Flores-Cano; M. Sánchez-Polo; J. Messoud; I. Velo-Gala; R. Ocampo-Pérez; J. Rivera-Utrilla
This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion.
Journal of Colloid and Interface Science | 2013
R. Ocampo-Pérez; F. Orellana-Garcia; M. Sánchez-Polo; J. Rivera-Utrilla; I. Velo-Gala; M.V. López-Ramón; Miguel A. Alvarez-Merino
The objective of this study was to analyze the equilibrium and adsorption kinetics of nitroimidazoles on activated carbon cloth (ACC), determining the main interactions responsible for the adsorption process and the diffusion mechanism of these compounds on this material. The influence of the different operational variables, such as ionic strength, pH, temperature, and type of water (ultrapure, surface, and waste), was also studied. The results obtained show that the ACC has a high capacity to adsorb nitroimidazoles in aqueous solution. Electrostatic interactions play an important role at pH<3, which favors the repulsive forces between dimetridazole or metronidazole and the ACC surface. The formation of hydrogen bonds and dispersive interactions play the predominant role at higher pH values. Modifications of the ACC with NH3, K2S2O8, and O3 demonstrated that its surface chemistry plays a predominant role in nitroimidazole adsorption on this material. The adsorption capacity of ACC is considerably high in surface waters and reduced in urban wastewater, due to the levels of alkalinity and dissolved organic matter present in the different types of water. Finally, the results of applying kinetic models revealed that the global adsorption rate of dimetridazole and metronidazole is controlled by intraparticle diffusion.