R. P. Giddings
Bangor University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. P. Giddings.
Optics Express | 2010
R. P. Giddings; X. Q. Jin; E. Hugues-Salas; Elias Giacoumidis; Jinlong Wei; J. M. Tang
The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.
IEEE Photonics Journal | 2011
X. Q. Jin; Jinlong Wei; R. P. Giddings; Terence Quinlan; Stuart D. Walker; J. M. Tang
Experimental demonstrations are reported for end-to-end real-time optical orthogonal frequency division multiplexing (OOFDM) transceivers incorporating three widely adopted adaptive loading techniques, namely, power loading (PL), bit loading (BL), and bit-and-power loading (BPL). In directly modulated distributed-feedback (DFB) laser-based, intensity-modulation, and direct-detection (IMDD) transmission systems consisting of up to 35-km single-mode fibers (SMFs), extensive experimental comparisons between these adaptive loading techniques are made in terms of maximum achievable signal bit rate, optical power budget, and digital signal processing (DSP) resource usage. It is shown that BPL is capable of supporting end-to-end real-time OOFDM transmission of 11.75 Gb/s over 25-km SMFs in the aforementioned systems at sampling speeds as low as 4 GS/s. In addition, experimental measurements also show that BPL (PL) offers the highest (lowest) signal bit rate, and their optical power budgets are similar. The observed signal bit rate difference between BPL and PL is almost independent of sampling speed and transmission distance. All the aforementioned key features agree very well with numerical simulations. On the other hand, BPL-consumed DSP resources are approximately three times higher than those required by PL. The results indicate that PL is a preferred choice for cost-effective OOFDM transceiver design.
Optics Express | 2010
Jinlong Wei; E. Hugues-Salas; R. P. Giddings; X. Q. Jin; X. Zheng; Sa’ad Petrous Mansoor; J. M. Tang
Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5 Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10 Gb/s downstream and 6 Gb/s upstream over 40 km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23 Gb/s downstream and 8 Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems.
Optics Express | 2011
E. Hugues-Salas; R. P. Giddings; X. Q. Jin; Jinlong Wei; X. Zheng; Yanhua Hong; C. Shu; J. M. Tang
The feasibility of utilising low-cost, un-cooled vertical cavity surface-emitting lasers (VCSELs) as intensity modulators in real-time optical OFDM (OOFDM) transceivers is experimentally explored, for the first time, in terms of achievable signal bit rates, physical mechanisms limiting the transceiver performance and performance robustness. End-to-end real-time transmission of 11.25 Gb/s 64-QAM-encoded OOFDM signals over simple intensity modulation and direct detection, 25 km SSMF PON systems is experimentally demonstrated with a power penalty of 0.5 dB. The low extinction ratio of the VCSEL intensity-modulated OOFDM signal is identified to be the dominant factor determining the maximum obtainable transmission performance. Experimental investigations indicate that, in addition to the enhanced transceiver performance, adaptive power loading can also significantly improve the system performance robustness to variations in VCSEL operating conditions. As a direct result, the aforementioned capacity versus reach performance is still retained over a wide VCSEL bias (driving) current (voltage) range of 4.5 mA to 9 mA (275 mVpp to 320 mVpp). This work is of great value as it demonstrates the possibility of future mass production of cost-effective OOFDM transceivers for PON applications.
Optics Express | 2010
Jinlong Wei; C. Sánchez; R. P. Giddings; E. Hugues-Salas; J. M. Tang
Based on a comprehensive theoretical optical orthogonal frequency division multiplexing (OOFDM) system model rigorously verified by comparing numerical results with end-to-end real-time experimental measurements at 11.25Gb/s, detailed explorations are undertaken, for the first time, of the impacts of various physical factors on the OOFDM system performance over directly modulated DFB laser (DML)-based, intensity modulation and direct detection (IMDD), single-mode fibre (SMF) systems without in-line optical amplification and chromatic dispersion compensation. It is shown that the low extinction ratio (ER) of the DML modulated OOFDM signal is the predominant factor limiting the maximum achievable optical power budget, and the subcarrier intermixing effect associated with square-law photon detection in the receiver reduces the optical power budget by at least 1dB. Results also indicate that, immediately after the DML in the transmitter, the insertion of a 0.02nm bandwidth optical Gaussian bandpass filter with a 0.01nm wavelength offset with respect to the optical carrier wavelength can enhance the OOFDM signal ER by approximately 1.24dB, thus resulting in a 7dB optical power budget improvement at a total channel BER of 1 × 10(-3).
Optics Express | 2012
R. P. Giddings; E. Hugues-Salas; J. M. Tang
Record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) transmission is experimentally demonstrated, for the first time, in a simple electro-absorption modulated laser (EML)-based 25 km standard SMF system using intensity modulation and direct detection (IMDD). Adaptively modulated baseband (0-2GHz) and passband (6.125 ± 2GHz) OFDM RF sub-bands, supporting line rates of 10 Gb/s and 9.125 Gb/s respectively, are independently generated and detected with FPGA-based DSP clocked at only 100 MHz and DACs/ADCs operating at sampling speeds as low as 4GS/s. The two OFDM sub-bands are electrically frequency-division-multiplexed (FDM) for intensity modulation of a single optical carrier by an EML. To maximize and balance the signal transmission performance of each sub-band, on-line adaptive features and on-line performance monitoring is fully exploited to optimize key OOFDM transceiver and system parameters, which includes subcarrier characteristics within each individual OFDM sub-band, total and relative sub-band power as well as EML operating conditions. The achieved 19.125 Gb/s over 25 km SMF OOFDM transmission system has an optical power budget of 13.5 dB, and shows almost identical bit error rate (BER) performances for both the baseband and passband signals. In addition, experimental investigations also indicate that the maximum achievable transmission capacity of the present system is mainly determined by the EML frequency chirp-enhanced chromatic dispersion effect, and the passband BER performance is not affected by the two sub-band-induced intermixing effect, which, however, gives a 1.2dB optical power penalty to the baseband signal transmission.
Journal of Lightwave Technology | 2009
Jinlong Wei; Ali Hamié; R. P. Giddings; J. M. Tang
Detailed numerical investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals are undertaken, for the first time, in optical amplification- and chromatic dispersion compensation-free SMF IMDD systems using semiconductor optical amplifiers (SOAs) as intensity modulators. A theoretical model describing the characteristics of the SOA-based intensity modulators is developed, based on which optimum SOA operating conditions are identified. It is shown that the optimized SOA-based intensity modulators support a 30 Gb/s AMOOFDM signal transmission over a 80 km SMF, which doubles the transmission performance offered by directly modulated DFB lasers. The aforementioned performance enhancement is mainly due to a considerable reduction in the frequency chirp effect, resulting from the strong SOA gain saturation-induced decrease in SOA effective carrier lifetime. Relatively low extinction ratio and clipping of the SOA modulated signals are identified to be the key factors limiting the maximum achievable AMOOFDM transmission performance. In addition, results also indicate that both the optimum SOA operating conditions and the AMOOFDM transmission performance are insusceptible to variations in SOA parameters.
Optics Express | 2011
X. Q. Jin; E. Hugues-Salas; R. P. Giddings; Jinlong Wei; J. Groenewald; J. M. Tang
End-to-end real-time experimental demonstrations are reported, for the first time, of aggregated 11.25Gb/s over 26.4km standard SMF, optical orthogonal frequency division multiple access (OOFDMA) PONs with adaptive dynamic bandwidth allocation (DBA). The demonstrated intensity-modulation and direct-detection (IMDD) OOFDMA PON system consists of two optical network units (ONUs), each of which employs a DFB-based directly modulated laser (DML) or a VCSEL-based DML for modulating upstream signals. Extensive experimental explorations of dynamic OOFDMA PON system properties are undertaken utilizing identified optimum DML operating conditions. It is shown that, for simultaneously achieving acceptable BERs for all upstream signals, the OOFDMA PON system has a >3dB dynamic ONU launch power variation range, and the BER performance of the system is insusceptible to any upstream symbol offsets slightly smaller than the adopted cyclic prefix. In addition, experimental results also indicate that, in addition to maximizing the aggregated system transmission capacity, adaptive DBA can also effectively reduce imperfections in transmission channel properties without affecting signal bit rates offered to individual ONUs.
Optics Express | 2009
X. Q. Jin; R. P. Giddings; J. M. Tang
Real-time optical orthogonal frequency division multiplexing (OOFDM) transceivers are experimentally demonstrated with advanced pilot subcarrier-assisted channel estimation being implemented. The channel estimation technique is, for the first time, proposed and experimentally verified rigorously, which offers a number of unique features including high accuracy, low complexity, small pilot bandwidth usage, excellent stability and buffer-free data flow. The fastest ever real-time end-to-end transmission of 3 Gb/s 16-QAM-encoded OOFDM signals over 75 km MetroCor single-mode fibres is achieved with negative power penalties of -2dB at BERs of 1.0 x 10(-4) in directly modulated DFB laser-based, intensity-modulation and direct-detection systems without in-line optical amplification and chromatic dispersion compensation.
Optics Express | 2009
Jinlong Wei; X. L. Yang; R. P. Giddings; J. M. Tang
The wavelength dependent transmission performance of adaptively modulated optical OFDM (AMOOFDM) signals is investigated, for the first time, over optical amplification- and chromatic dispersion compensation-free IMDD SMF systems using semiconductor optical amplifiers (SOAs) as intensity modulators. A theoretical SOA model describing both optical gain saturation and gain spectral dynamics is developed, based on which optimum SOA operating conditions are identified for various wavelengths varying in a broad range of 1510 nm- 1590 nm. Results show that, SOA intensity modulators operating at the identified optimum conditions enable the realization of colourless AMOOFDM transmitters within the aforementioned wavelength window. Such transmitters are capable of supporting >30 Gb/s signal transmission over 60 km SMFs.