Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R.P.M.A. Crooijmans is active.

Publication


Featured researches published by R.P.M.A. Crooijmans.


PLOS ONE | 2009

Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology

A. M. Ramos; R.P.M.A. Crooijmans; Nabeel A. Affara; Andreia J. Amaral; Alan Archibald; Jonathan E. Beever; Christian Bendixen; Carol Churcher; Richard Clark; Patrick Dehais; Mark Hansen; Jakob Hedegaard; Zhi-Liang Hu; Hindrik Hd Kerstens; Andy Law; Hendrik-Jan Megens; Denis Milan; D. J. Nonneman; G. A. Rohrer; Max F. Rothschild; T. P. L. Smith; Robert D. Schnabel; Curt P. Van Tassell; Jeremy F. Taylor; Ralph T Wiedmann; Lawrence B. Schook; M.A.M. Groenen

Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illuminas Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs.


PLOS Biology | 2010

Multi-platform next-generation sequencing of the domestic Turkey (Meleagris gallopavo): Genome assembly and analysis

Rami A. Dalloul; Julie A Long; Aleksey V. Zimin; Luqman Aslam; Kathryn Beal; Le Ann Blomberg; Pascal Bouffard; David W. Burt; Oswald Crasta; R.P.M.A. Crooijmans; Kristal L. Cooper; Roger A. Coulombe; Supriyo De; Mary E. Delany; Jerry B. Dodgson; Jennifer J Dong; Clive Evans; Karin M. Frederickson; Paul Flicek; Liliana Florea; Otto Folkerts; M.A.M. Groenen; Tim Harkins; Javier Herrero; Steve Hoffmann; Hendrik-Jan Megens; Andrew Jiang; Pieter J. de Jong; Peter K. Kaiser; Heebal Kim

The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome.


Genetics Selection Evolution | 2003

Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools

M.A.M. Groenen; Michèle Tixier-Boichard; Abraham B. Korol; Lior David; Valery M. Kirzhner; Terry Burke; Asili Barre-Dirie; R.P.M.A. Crooijmans; Kari Elo; Marcus W. Feldman; Paul J. Freidlin; Asko Mäki-Tanila; Marian Oortwijn; Pippa Thomson; Alain Vignal; Klaus Wimmers; Steffen Weigend

In a project on the biodiversity of chickens funded by the European Commission (EC), eight laboratories collaborated to assess the genetic variation within and between 52 populations from a wide range of chicken types. Twenty-two di-nucleotide microsatellite markers were used to genotype DNA pools of 50 birds from each population. The polymorphism measures for the average, the least polymorphic population (inbred C line) and the most polymorphic population (Gallus gallus spadiceus) were, respectively, as follows: number of alleles per locus, per population: 3.5, 1.3 and 5.2; average gene diversity across markers: 0.47, 0.05 and 0.64; and proportion of polymorphic markers: 0.91, 0.25 and 1.0. These were in good agreement with the breeding history of the populations. For instance, unselected populations were found to be more polymorphic than selected breeds such as layers. Thus DNA pools are effective in the preliminary assessment of genetic variation of populations and markers. Mean genetic distance indicates the extent to which a given population shares its genetic diversity with that of the whole tested gene pool and is a useful criterion for conservation of diversity. The distribution of population-specific (private) alleles and the amount of genetic variation shared among populations supports the hypothesis that the red jungle fowl is the main progenitor of the domesticated chicken.


Genome Research | 2008

A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate

M.A.M. Groenen; Per Wahlberg; Mario Foglio; Hans H. Cheng; Hendrik-Jan Megens; R.P.M.A. Crooijmans; Francois Besnier; Mark Lathrop; William M. Muir; Gane Ka-Shu Wong; Ivo Gut; Leif Andersson

The resolution of the chicken consensus linkage map has been dramatically improved in this study by genotyping 12,945 single nucleotide polymorphisms (SNPs) on three existing mapping populations in chicken: the Wageningen (WU), East Lansing (EL), and Uppsala (UPP) mapping populations. As many as 8599 SNPs could be included, bringing the total number of markers in the current consensus linkage map to 9268. The total length of the sex average map is 3228 cM, considerably smaller than previous estimates using the WU and EL populations, reflecting the higher quality of the new map. The current map consists of 34 linkage groups and covers at least 29 of the 38 autosomes. Sex-specific analysis and comparisons of the maps based on the three individual populations showed prominent heterogeneity in recombination rates between populations, but no significant heterogeneity between sexes. The recombination rates in the F(1) Red Jungle fowl/White Leghorn males and females were significantly lower compared with those in the WU broiler population, consistent with a higher recombination rate in purebred domestic animals under strong artificial selection. The recombination rate varied considerably among chromosomes as well as along individual chromosomes. An analysis of the sequence composition at recombination hot and cold spots revealed a strong positive correlation between GC-rich sequences and high recombination rates. The GC-rich cohesin binding sites in particular stood out from other GC-rich sequences with a 3.4-fold higher density at recombination hot spots versus cold spots, suggesting a functional relationship between recombination frequency and cohesin binding.


Nature | 2004

A physical map of the chicken genome

John W. Wallis; Jan Aerts; M. A. M. Groenen; R.P.M.A. Crooijmans; Dan Layman; Tina Graves; Debra E Scheer; Colin Kremitzki; Mary J Fedele; Nancy K Mudd; Marco Cardenas; Jamey Higginbotham; Jason Carter; Rebecca McGrane; Tony Gaige; Kelly Mead; Jason Walker; Derek Albracht; Jonathan Davito; Shiaw-Pyng Yang; Shin Leong; Asif T. Chinwalla; Mandeep Sekhon; Kristine M. Wylie; Jerry B. Dodgson; Michael N Romanov; Hans H. Cheng; Pieter J. de Jong; Kazutoyo Osoegawa; Mikhail Nefedov

Strategies for assembling large, complex genomes have evolved to include a combination of whole-genome shotgun sequencing and hierarchal map-assisted sequencing. Whole-genome maps of all types can aid genome assemblies, generally starting with low-resolution cytogenetic maps and ending with the highest resolution of sequence. Fingerprint clone maps are based upon complete restriction enzyme digests of clones representative of the target genome, and ultimately comprise a near-contiguous path of clones across the genome. Such clone-based maps are used to validate sequence assembly order, supply long-range linking information for assembled sequences, anchor sequences to the genetic map and provide templates for closing gaps. Fingerprint maps are also a critical resource for subsequent functional genomic studies, because they provide a redundant and ordered sampling of the genome with clones. In an accompanying paper we describe the draft genome sequence of the chicken, Gallus gallus, the first species sequenced that is both a model organism and a global food source. Here we present a clone-based physical map of the chicken genome at 20-fold coverage, containing 260 contigs of overlapping clones. This map represents approximately 91% of the chicken genome and enables identification of chicken clones aligned to positions in other sequenced genomes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds

William M. Muir; Gane Ka-Shu Wong; Yong Zhang; Jun Wang; M.A.M. Groenen; R.P.M.A. Crooijmans; Hendrik-Jan Megens; Huanmin Zhang; Ron Okimoto; Addie Vereijken; Annemieke Jungerius; Gerard A. A. Albers; Cindy Taylor Lawley; Mary E. Delany; Sean MacEachern; Hans H. Cheng

Breed utilization, genetic improvement, and industry consolidation are predicted to have major impacts on the genetic composition of commercial chickens. Consequently, the question arises as to whether sufficient genetic diversity remains within industry stocks to address future needs. With the chicken genome sequence and more than 2.8 million single-nucleotide polymorphisms (SNPs), it is now possible to address biodiversity using a previously unattainable metric: missing alleles. To achieve this assessment, 2551 informative SNPs were genotyped on 2580 individuals, including 1440 commercial birds. The proportion of alleles lacking in commercial populations was assessed by (1) estimating the global SNP allele frequency distribution from a hypothetical ancestral population as a reference, then determining the portion of the distribution lost, and then (2) determining the relationship between allele loss and the inbreeding coefficient. The results indicate that 50% or more of the genetic diversity in ancestral breeds is absent in commercial pure lines. The missing genetic diversity resulted from the limited number of incorporated breeds. As such, hypothetically combining stocks within a company could recover only preexisting within-breed variability, but not more rare ancestral alleles. We establish that SNP weights act as sentinels of biodiversity and provide an objective assessment of the strains that are most valuable for preserving genetic diversity. This is the first experimental analysis investigating the extant genetic diversity of virtually an entire agricultural commodity. The methods presented are the first to characterize biodiversity in terms of allelic diversity and to objectively link rate of allele loss with the inbreeding coefficient.


BMC Genomics | 2011

The development and characterization of a 60K SNP chip for chicken

M.A.M. Groenen; Hendrik Jan Megens; Yalda Zare; Wesley C. Warren; LaDeana W. Hillier; R.P.M.A. Crooijmans; Addie Vereijken; Ron Okimoto; William M. Muir; Hans H. Cheng

BackgroundIn livestock species like the chicken, high throughput single nucleotide polymorphism (SNP) genotyping assays are increasingly being used for whole genome association studies and as a tool in breeding (referred to as genomic selection). To be of value in a wide variety of breeds and populations, the success rate of the SNP genotyping assay, the distribution of the SNP across the genome and the minor allele frequencies (MAF) of the SNPs used are extremely important.ResultsWe describe the design of a moderate density (60k) Illumina SNP BeadChip in chicken consisting of SNPs known to be segregating at high to medium minor allele frequencies (MAF) in the two major types of commercial chicken (broilers and layers). This was achieved by the identification of 352,303 SNPs with moderate to high MAF in 2 broilers and 2 layer lines using Illumina sequencing on reduced representation libraries. To further increase the utility of the chip, we also identified SNPs on sequences currently not covered by the chicken genome assembly (Gallus_gallus-2.1). This was achieved by 454 sequencing of the chicken genome at a depth of 12x and the identification of SNPs on 454-derived contigs not covered by the current chicken genome assembly. In total we added 790 SNPs that mapped to 454-derived contigs as well as 421 SNPs with a position on Chr_random of the current assembly. The SNP chip contains 57,636 SNPs of which 54,293 could be genotyped and were shown to be segregating in chicken populations. Our SNP identification procedure appeared to be highly reliable and the overall validation rate of the SNPs on the chip was 94%. We were able to map 328 SNPs derived from the 454 sequence contigs on the chicken genome. The majority of these SNPs map to chromosomes that are already represented in genome build Gallus_gallus-2.1.0. Twenty-eight SNPs were used to construct two new linkage groups most likely representing two micro-chromosomes not covered by the current genome assembly.ConclusionsThe high success rate of the SNPs on the Illumina chicken 60K Beadchip emphasizes the power of Next generation sequence (NGS) technology for the SNP identification and selection step. The identification of SNPs from sequence contigs derived from NGS sequencing resulted in improved coverage of the chicken genome and the construction of two new linkage groups most likely representing two chicken micro-chromosomes.


Mammalian Genome | 2000

Two-dimensional screening of the Wageningen chicken BAC library.

R.P.M.A. Crooijmans; J. Vrebalov; R.J.M. Dijkhof; J.J. van der Poel; M. A. M. Groenen

Abstract. We have constructed a Bacterial Artificial Chromosome (BAC) library that provides 5.5-fold redundant coverage of the chicken genome. The library was made by cloning partial HindIII-digested high-molecular-weight (HMW) DNA of a female White Leghorn chicken into the HindIII site of the vector pECBAC1. Several modifications of standard protocols were necessary to clone efficiently large partial HindIII DNA fragments. The library consists of 49,920 clones arranged in 130 384-well plates. An average insert size of 134 kb was estimated from the analysis of 152 randomly selected BAC clones. The average number of NotI restriction sites per clone was 0.77. After individual growth, DNA was isolated of the pooled clones of each 384-well plate, and subsequently DNA of each plate was isolated from the individual row and column pools. Screening of the Wageningen chicken BAC library was performed by two-dimensional PCR with 125 microsatellite markers. For 124 markers at least one BAC clone was obtained. FISH experiments of 108 BAC clones revealed chimerism in less than 1%. The number of different BAC clones per marker present in the BAC library was examined for 35 markers which resulted in a total of 167 different BAC clones. Per marker the number of BAC clones varied from 1 to 11, with an average of 4.77. The chicken BAC library constitutes an invaluable tool for positional cloning and for comparative mapping studies.


Genetics Selection Evolution | 2008

Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication

Hendrik-Jan Megens; R.P.M.A. Crooijmans; Magali San Cristobal; Xiao Hui; Ning Li; M.A.M. Groenen

Microsatellite diversity in European and Chinese pigs was assessed using a pooled sampling method on 52 European and 46 Chinese pig populations. A Neighbor Joining analysis on genetic distances revealed that European breeds were grouped together and showed little evidence for geographic structure, although a southern European and English group could tentatively be assigned. Populations from international breeds formed breed specific clusters. The Chinese breeds formed a second major group, with the Sino-European synthetic Tia Meslan in-between the two large clusters. Within Chinese breeds, in contrast to the European pigs, a large degree of geographic structure was noted, in line with previous classification schemes for Chinese pigs that were based on morphology and geography. The Northern Chinese breeds were most similar to the European breeds. Although some overlap exists, Chinese breeds showed a higher average degree of heterozygosity and genetic distance compared to European ones. Between breed diversity was even more pronounced and was the highest in the Central Chinese pigs, reflecting the geographically central position in China. Comparing correlations between genetic distance and heterozygosity revealed that China and Europe represent different domestication or breed formation processes. A likely cause is a more diverse wild boar population in Asia, but various other possible contributing factors are discussed.


Genetics Selection Evolution | 2002

Assessing the contribution of breeds to genetic diversity in conservation schemes

Herwin Eding; R.P.M.A. Crooijmans; M.A.M. Groenen; Theo H. E. Meuwissen

The quantitative assessment of genetic diversity within and between populations is important for decision making in genetic conservation plans. In this paper we define the genetic diversity of a set of populations, S, as the maximum genetic variance that can be obtained in a random mating population that is bred from the set of populations S. First we calculated the relative contribution of populations to a core set of populations in which the overlap of genetic diversity was minimised. This implies that the mean kinship in the core set should be minimal. The above definition of diversity differs from Weitzman diversity in that it attempts to conserve the founder population (and thus minimises the loss of alleles), whereas Weitzman diversity favours the conservation of many inbred lines. The former is preferred in species where inbred lines suffer from inbreeding depression. The application of the method is illustrated by an example involving 45 Dutch poultry breeds. The calculations used were easy to implement and not computer intensive. The method gave a ranking of breeds according to their contributions to genetic diversity. Losses in genetic diversity ranged from 2.1% to 4.5% for different subsets relative to the entire set of breeds, while the loss of founder genome equivalents ranged from 22.9% to 39.3%.

Collaboration


Dive into the R.P.M.A. Crooijmans's collaboration.

Top Co-Authors

Avatar

M.A.M. Groenen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hendrik-Jan Megens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J.J. van der Poel

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

H. Bovenhuis

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

S.J.B. Cornelissen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Mirte Bosse

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ole Madsen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

A. Veenendaal

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hendrik Jan Megens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

M.G.B. Nieuwland

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge