Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R.P.S. Chakradhar is active.

Publication


Featured researches published by R.P.S. Chakradhar.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

Combustion synthesis, characterization and Raman studies of ZnO nanopowders

A. Jagannatha Reddy; M.K. Kokila; H. Nagabhushana; J.L. Rao; C. Shivakumara; B.M. Nagabhushana; R.P.S. Chakradhar

Spherical shaped ZnO nanopowders (14-50 nm) were synthesized by a low temperature solution combustion method in a short time <5 min. Rietveld analysis show that ZnO has hexagonal wurtzite structure with lattice constants a=3.2511(1) Å, c=5.2076(2) Å, unit cell volume (V)=47.66(5) (Å)(3) and belongs to space group P63mc. SEM micrographs reveal that the particles are spherical in shape and the powders contained several voids and pores. TEM results also confirm spherical shape, with average particle size of 14-50 nm. The values are consistent with the grain sizes measured from Scherrers method and Williamson-Hall (W-H) plots. A broad UV-vis absorption spectrum was observed at ∼375 nm which is a characteristic band for the wurtzite hexagonal pure ZnO. The optical energy band gap of 3.24 eV was observed for nanopowder which is slightly lower than that of the bulk ZnO (3.37 eV). The observed Raman peaks at 438 and 588 cm(-1) were attributed to the E(2) (high) and E(1) (LO) modes respectively. The broad band at 564 cm(-1) is due to disorder-activated Raman scattering for the A(1) mode. These bands are associated with the first-order Raman active modes of the ZnO phase. The weak bands observed in the range 750-1000 cm(-1) are due to small defects.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

Effect of different fuels on structural, thermo and photoluminescent properties of Gd2O3 nanoparticles

N. Dhananjaya; H. Nagabhushana; B.M. Nagabhushana; B. Rudraswamy; S.C. Sharma; D.V. Sunitha; C. Shivakumara; R.P.S. Chakradhar

Gd(2)O(3) nanoparticles (27-60 nm) have been synthesized by the low temperature solution combustion method using citric acid, urea, glycine and oxalyl dihydrazide (ODH) as fuels in a short time. The structural and luminescence properties have been carried out using powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman, UV-Vis, photoluminescence (PL) and thermoluminescence (TL) techniques. The optical band gap values were estimated for as formed and 800 °C calcined samples. The band gap values in as-formed and calcined samples were found to be in the range 4.89-5.59 eV. It is observed that, the band gap values are lower for as-formed products and it has been attributed to high degree of structural defects. However, in calcined samples, structure becomes more order with reduced structure defects. Upon 270 nm excitation, deep blue UV-band at ~390nm along with blue (420-482 nm), green (532 nm) and red emission (612 nm) was observed. The 390 nm emission peak may be attributed to recombination of delocalized electron close to the conduction band with a single charged state of surface oxygen vacancy. TL measurements were carried out on Gd(2)O(3) prepared by different fuels by irradiating with γ-rays (1 kGy). A well resolved glow peak at 230 °C was observed for all the samples. It is observed that TL intensity is found to be higher in for urea fuel when compared to others. From TL glow curves the kinetic parameters were estimated using Chens peak shape method and results are discussed in detail.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

Enhanced photoluminescence of Gd2O3:Eu3+ nanophosphors with alkali (M = Li+, Na+, K+) metal ion co-doping

N. Dhananjaya; H. Nagabhushana; B.M. Nagabhushana; B. Rudraswamy; C. Shivakumara; K. Narahari; R.P.S. Chakradhar

Gd(1.95)Eu(0.04)M(0.01)O(3) (M=Li(+), Na(+), K(+)) nanophosphors have been synthesized by a low temperature solution combustion (LSC) method. Powder X-ray diffraction pattern (PXRD), scanning electron microscopy (SEM), UV-vis and photoluminescence (PL) measurements were carried out to characterize their structural and luminescent properties. The excitation and emission spectra indicated that the phosphor could be well excited by UV light (243 nm) and emit red light about 612 nm. The effect of alkali co-dopant on PL properties has been examined. The results showed that incorporation of Li(+), Na(+) and K(+) in to Gd(2)O(3):Eu(3+) phosphor would lead to a remarkable increase of photoluminescence. The PL intensity of Gd(2)O(3):Eu(3+) phosphor was improved evidently by co-doping with Li(+) ions whose radius is less than that of Gd(3+) and hardly with Na(+), K(+) whose radius is larger than that of Gd(3+). The effect of co-dopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu(3+) activator. These results will play an important role in seeking some more effective co-dopants.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

CdSiO3:Pr3+ nanophosphor: Synthesis, characterization and thermoluminescence studies

D.V. Sunitha; C. Manjunatha; C.J. Shilpa; H. Nagabhushana; S.C. Sharma; B.M. Nagabhushana; N. Dhananjaya; C. Shivakumara; R.P.S. Chakradhar

A series of Pr(3+) (1-9 mol%) doped CdSiO(3) nanophosphors have been prepared for the first time by a low temperature solution combustion method using oxalyldihydrizide (ODH) as a fuel. The final product was characterized by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The average crystallite size was calculated using Debye-Scherrers formula and Williamson-Hall (W-H) plots and found to be in the range 31-37 nm. The optical energy band gap (E(g)) of undoped for Pr(3+) doped samples were estimated from Tauc relation which varies from 5.15-5.36 eV. Thermoluminescence (TL) properties of Pr(3+) doped CdSiO(3) nanophosphor has been investigated using γ-irradiation in the dose range 1-6 kGy at a heating rate of 5 °C s(-1). The phosphor shows a well resolved glow peak at ∼171 °C along with shouldered peak at 223 °C in the higher temperature side. It is observed that TL intensity increase with increase of Pr(3+) concentration. Further, the TL intensity at 171 °C is found to be increase linearly with increase in γ-dose which is highly useful in radiation dosimetry. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics was estimated by Luschiks method and the results are discussed.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

Combustion synthesis, structural characterization, thermo and photoluminescence studies of CdSiO3:Dy3+ nanophosphor

C. Manjunatha; D.V. Sunitha; H. Nagabhushana; B.M. Nagabhushana; S.C. Sharma; R.P.S. Chakradhar

CdSiO(3):Dy(3+) (1-9mol%) nanophosphors were prepared for the first time using the solution combustion method. The process of monoclinic phase formation was investigated by PXRD, TG-DTA and FTIR. The results show that the phase formation temperature of combustion-derived monoclinic CdSiO(3) is found to be lower as compared to the powders prepared by solid-state and sol-gel methods. It was observed that the average crystallite size calculated by Debye-Scherrers formula and Williamson-Hall (W-H) plot are well comparable and was found to be in the range of 35-70 nm. Scanning electron micrographs indicate that there exist circular microcrystalline particles. It is observed that the optical energy gap is widened with the increase of Dy(3+) ion dopant. The photoluminescence (PL) spectra exhibit characteristic transitions of Dy(3+) due to (4)F(9/2)→(6)H(15/2) (blue) and (4)F(9/2)→(6)H(13/2) (yellow) regions. The thermoluminescence (TL) glow curve of CdSiO(3):Dy(3+) nano powder exposed to UV irradiation exhibited one main peak centered at 170°C. The intensity of the main peak increases up to the dose of 20 min then it decreases. The glow curves were analyzed by the glow peak shape method and the estimated trap parameters are discussed.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013

Investigation of structural and luminescence properties of Ho3+ doped YAlO3 nanophosphors synthesized through solution combustion route

H.B. Premkumar; B.S. Ravikumar; D.V. Sunitha; H. Nagabhushana; S.C. Sharma; M.B. Savitha; S. Mohandas Bhat; B.M. Nagabhushana; R.P.S. Chakradhar

YAlO3:Ho(3+) (1-5mol%) nanophosphors have been prepared by solution combustion route using oxalyl dihydrazide (ODH) as a fuel. The final product was well characterized by powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV-Vis, etc. PXRD patterns confirm the formation of highly crystalline orthorhombic phase structure. SEM and TEM studies show the particles are dumbbell shape, highly agglomerated and nano-size (∼30nm). The direct energy band gap (Eg) values estimated from Taucs relation were found to be in the range 5.76-5.99eV. Photoluminescence (PL) studies show green (540 and 548nm) and red (645 and 742nm) emissions upon excited at 452nm wavelength. The emission peaks at ∼742 and 645nm was associated with the transitions of (5)F4→(5)I7 and (5)F5→(5)I8 respectively. The higher energy bands located at 540 and 548nm were associated with (5)F4, (5)S2→(5)I8 transitions. Thermoluminescence (TL) studies of γ-irradiated YAlO3:Ho(3+) (1-5mol%) show two glow peaks at 223 and 325°C recorded at a heating rate of 2.5°Cs(-1). The 223°C glow peak follow linear behavior up to 1kGy and after that, it showed sub-linearity. Up to 1kGy, the phosphor is quite useful in radiation dosimetry. The kinetic parameters (E, b and s) were estimated from glow peak shape method. The CIE coordinate values lies within the green region. Therefore, the present phosphors may have potential application in WLEDs as green phosphor.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

YAlO3:Cr3+ nanophosphor: synthesis, photoluminescence, EPR, dosimetric studies.

H.B. Premkumar; D.V. Sunitha; H. Nagabhushana; S.C. Sharma; B.M. Nagabhushana; J.L. Rao; Kinshuk Gupta; R.P.S. Chakradhar

YAlO(3):Cr(3+) (0.1 mol%) nanophosphor has been synthesized by low temperature solution combustion method. The X-ray diffraction studies reveal an orthorhombic structure. Transmission electron microscopy reveals that the particles are spherical in shape with nano-size ~40-65 nm. Electron paramagnetic resonance (EPR) spectrum shows a resonance signal with effective g value at g=1.978 which can be attributed to the exchange coupled Cr(3+) ion pairs in weakly distorted sites. The photoluminescence spectrum shows an intense doublet at 677 nm and 694 nm (R lines) assigned to spin-forbidden (2)E(g)→(4)A(2)(g) transition of Cr(3+) ions. EPR and PL studies reveal that the Cr(3+) ions occupy Al(3+) sites in YAlO(3). The interesting feature reported in this work concerns the linearity with gamma dose in the wide range (0.1-6 kGy). Prominent TL glow peaks at 226 °C and 346 °C were observed for both γ and UV-rays respectively. It is observed that the peaks at 226 °C and 346 °C eventually show a linear response up to 5 kGy which makes them a candidate for high dose dosimetry of ionizing radiation. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped and Cr doped samples were determined using Chens glow peak shape method and the results are discussed in detail.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO2 thin films

M. Vishwas; K. Narasimha Rao; R.P.S. Chakradhar

Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

EPR, thermo and photoluminescence properties of ZnO nanopowders.

A. Jagannatha Reddy; M.K. Kokila; H. Nagabhushana; J.L. Rao; C. Shivakumara; B.M. Nagabhushana; R.P.S. Chakradhar

Nanocrystalline ZnO powders have been synthesized by a low temperature solution combustion method. The photoluminescence (PL) spectrum of as-formed and heat treated ZnO shows strong violet (402, 421, 437, 485 nm) and weak green (520 nm) emission peaks respectively. The PL intensities of defect related emission bands decrease with calcinations temperature indicating the decrease of Zn(i) and V(o)(+) caused by the chemisorptions of oxygen. The results are correlated with the electron paramagnetic resonance (EPR) studies. Thermoluminescence (TL) glow curves of gamma irradiated ZnO nanoparticles exhibit a single broad glow peak at ∼343°C. This can be attributed to the recombination of charge carriers released from the surface states associated with oxygen defects, mainly interstitial oxygen ion centers. The trapping parameters of ZnO irradiated with various γ-doses are calculated using peak shape method. It is observed that the glow peak intensity increases with increase of gamma dose without changing glow curve shape. These two characteristic properties such as TL intensity increases with gamma dose and simple glow curve structure is an indication that the synthesized ZnO nanoparticles might be used as good TL dosimeter for high temperature application.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2014

Synthesis and luminescence properties of Sm3+ doped CaTiO3 nanophosphor for application in white LED under NUV excitation

M. Shivaram; H. Nagabhushana; S.C. Sharma; S.C. Prashantha; B. Daruka Prasad; N. Dhananjaya; R. Hari Krishna; B.M. Nagabhushana; C. Shivakumara; R.P.S. Chakradhar

CaTiO3:Sm(3+) (1-11 mol%) nanophosphors were successfully synthesized by a low temperature solution combustion method [LCS]. The structural and morphological properties of the phosphors were studied by using Powder X-ray diffractometer (PXRD), Fourier transform infrared (FTIR), X-ray photo electron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM). TEM studies indicate that the size of the phosphor is ∼20-35 nm. Photoluminescence (PL) properties of Sm(3+) (1-11 mol%) doped CaTiO3 for NUV excitation (407 nm) was studied in order to investigate the possibility of its use in White light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm(3+), such as (4)G5/2→(6)H5/2 (561 nm), (4)G5/2→(6)H7/2 (601-611 nm), (4)G5/2→(6)H9/2 (648 nm) and (4)G5/2→(6)H11/2 (703 nm) respectively. Further, the emission at 601-611 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for the application for near ultra violet (NUV) excitation. Thermoluminescence (TL) of the samples irradiated with gamma source in the dose range 100-500 Gy was recorded at a heating rate of 5°Cs(-1). Two well resolved glow peaks at 164°C and 214°C along with shouldered peak at 186°C were recorded. TL intensity increases up to 300 Gy and thereafter, it decreases with further increase of dose. The kinetic parameters namely activation energy (E), frequency factor (s) and order of kinetics were estimated and results were discussed in detail.

Collaboration


Dive into the R.P.S. Chakradhar's collaboration.

Top Co-Authors

Avatar

B.M. Nagabhushana

M. S. Ramaiah Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.C. Sharma

Dr. Hari Singh Gour University

View shared research outputs
Top Co-Authors

Avatar

C. Shivakumara

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.L. Rao

Sri Venkateswara University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H.B. Premkumar

Acharya Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. Manjunatha

Visvesvaraya Technological University

View shared research outputs
Top Co-Authors

Avatar

R. Hari Krishna

M. S. Ramaiah Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge