Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. R. Cockrum is active.

Publication


Featured researches published by R. R. Cockrum.


Journal of Animal Science | 2010

Effects of high-sulfur water and clinoptilolite on health and growth performance of steers fed forage-based diets

K. M. Cammack; Cody Wright; Kathy J. Austin; P. S. Johnson; R. R. Cockrum; K. L. Kessler; K. C. Olson

Sulfur-induced polioencephalomalacia (sPEM), a neurological disorder affecting ruminants, is associated with consumption of diets with increased S (high-S). High-S water is commonly found in many western states and is a major source of dietary S for grazing cattle. Consumption of high-S water has been associated with sPEM and decreased performance. Identification of a feed supplement that would counteract the negative effects of high-S water would decrease the incidence of sPEM and prevent performance reductions in regions with problematic water sources. The objectives of this study were to 1) determine the effects of administering high-S drinking water to forage-fed feedlot steers on health and performance, and 2) determine the effectiveness of clinoptilolite, a clay mineral with increased cation-exchange capacity, in negating the effects of high-S drinking water. Yearling steers (n = 96; 318.2 +/- 2.1 kg of BW) were randomly assigned to 1 of 4 treatments for a 77-d trial period: control with low-S water (566 mg of SO(4)/L), high-S water (3,651 mg of SO(4)/L), or high-S water plus clinoptilolite supplemented at 2.5 or 5.0% of the diet DM. Feed and water consumption were measured daily, and all steers were weighed on d -2, -1, 29, 53, 76, and 77. Plasma samples were collected on d 0, 58, and 77, and liver samples on d 0 and 77. There was a greater (P <or= 0.046) frequency of sPEM in high-S steers than control steers, but no differences among high-S treatment groups. In total, 12 cases of sPEM were confirmed by the presence of cortical lesions in steers consuming high-S water. Daily DMI (P = 0.002) and daily water intake (P = 0.001) were less in high-S water steers than control steers. No differences (P >or= 0.546) in ADG or G:F were observed. Plasma Cu decreased (P = 0.029) to a greater magnitude in high-S water steers than the control steers over the 77-d trial period. Mineral analyses of hepatic tissue from randomly selected healthy steers from each treatment group (n = 10 per treatment) showed an interaction (P <or= 0.034) of sample time and treatment for Cu, Se, and Zn concentrations. These results suggest that clinoptilolite does not negate the effects of high-S water, and administration of high-S water decreases herd health through an increased incidence of sPEM and reduced nutritional status.


Journal of Animal Science | 2010

Effects of dietary aflatoxin on the health and performance of growing barrows.

S. M. Rustemeyer; W. R. Lamberson; D. R. Ledoux; George E. Rottinghaus; D. P. Shaw; R. R. Cockrum; K. L. Kessler; Kathy J. Austin; K. M. Cammack

Aflatoxins, especially aflatoxin B1 (AFB1), can be greater in dried distillers grains with solubles (DDGS) because it can be concentrated during the ethanol production process. Increased use of DDGS in swine diets could potentially lead to an increased incidence of aflatoxicosis, a disease associated with decreased feed intake, reduced BW gain, and impaired liver function. The objective of this study was to determine the effects of AFB1 on the health, performance, and serum profile of growing barrows. Ninety Duroc × Yorkshire crossbred barrows were purchased (age = 35 ± 5 d; BW = 14.2 ± 3.0 kg), allocated to 9 pens with 10 pigs per pen, and randomly assigned to receive diets containing 0 µg/kg of AFB1 (CON), 250 µg/kg of AFB1 (LO), or 500 µg/kg of AFB1 (HI) for 7, 28, or 70 d in a 3 × 3 factorial arrangement of treatments. Feed intake was measured daily, and pigs were weighed and blood samples collected weekly. Serum was analyzed for concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (BILI), and blood urea nitrogen (BUN). Both ADFI and ADG were negatively affected (P ≤ 0.001) by AFB1 treatment. Average daily feed intake was less (P < 0.05) in HI barrows than in CON barrows from wk 5 to 10 and was less (P < 0.05) in LO barrows than in CON barrows in wk 5 and again from wk 8 to 10. Also, ADFI was less (P = 0.022) in HI barrows than LO barrows in wk 10. Decreased ADG (P < 0.05) was observed in HI barrows than in CON barrows in wk 8 and 10; no differences (P ≥ 0.665) in ADG were noted between CON and LO barrows. There was no effect (P ≥ 0.080) of AFB1 treatment on ALT or BILI concentrations. However, both AST and BUN were affected (P < 0.05) by AFB1 treatment. Serum AST was greater (P = 0.010) in LO barrows than CON barrows in wk 5, and serum BUN was greater (P = 0.004) in CON barrows than LO barrows in wk 3. Results from this study demonstrate that the performance and health of young growing barrows were affected by consumption of an AFB1-contaminated diet, especially when fed for a more extended period.


DNA Research | 2014

Diet Alters Both the Structure and Taxonomy of the Ovine Gut Microbial Ecosystem

Melinda J. Ellison; Gavin C. Conant; R. R. Cockrum; Kathy J. Austin; Huan Truong; Michela Becchi; W. R. Lamberson; K. M. Cammack

We surveyed the ruminal metagenomes of 16 sheep under two different diets using Illumina pair-end DNA sequencing of raw microbial DNA extracted from rumen samples. The resulting sequence data were bioinformatically mapped to known prokaryotic 16S rDNA sequences to identify the taxa present in the samples and then analysed for the presence of potentially new taxa. Strikingly, the majority of the microbial individuals found did not map to known taxa from 16S sequence databases. We used a novel statistical modelling approach to compare the taxonomic distributions between animals fed a forage-based diet and those fed concentrated grains. With this model, we found significant differences between the two groups both in the dominant taxa present in the rumen and in the overall shape of the taxa abundance curves. In general, forage-fed animals have a more diverse microbial ecosystem, whereas the concentrate-fed animals have ruminal systems more heavily dominated by a few taxa. As expected, organisms from methanogenic groups are more prevalent in forage-fed animals. Finally, all of these differences appear to be grounded in an underlying common input of new microbial individuals into the rumen environment, with common organisms from one feed group being present in the other, but at much lower abundance.


Journal of Animal Science | 2010

Differential gene expression of ewes varying in tolerance to dietary nitrate.

R. R. Cockrum; Kathy J. Austin; JaeWoo Kim; John R. Garbe; Scott C. Fahrenkrug; Jeremy F. Taylor; K. M. Cammack

Ruminants consuming diets with increased concentrations of nitrate (NO(3)(-)) can accumulate nitrite (NO(2)(-)) in the blood, resulting in toxicity. In a previous experiment, ewes identified as highly tolerant to subacute dietary NO(3)(-) were able to consume greater amounts of NO(3)(-) than lowly tolerant ewes without exhibiting signs of toxicity. We hypothesized that highly tolerant and lowly tolerant ewes differ in their ability to metabolize NO(3)(-) and thereby differ in the expression of hepatic genes involved in NO(3)(-) metabolism. Therefore, our objective was to identify hepatic genes differentially expressed between ewes classified as lowly tolerant and highly tolerant after administration of a subacute quantity of dietary NO(3)(-). Analysis of the Bovine Oligonucleotide Microarray data identified 100 oligonucleotides as differentially expressed (P < 0.05) between lowly tolerant and highly tolerant ewes. Functional analysis of the genes associated with these oligonucleotides revealed 2 response clusters of interest: metabolic and stress. Genes of interest within these 2 clusters (n = 17) and nonclustered genes with the greatest fold changes (FC; n = 5) were selected for validation by real-time reverse-transcription PCR. Relative expression, genomic regulation, and FC agreed between microarray and real-time reverse-transcription-PCR analyses, and FC differences (P < 0.05) between lowly tolerant and highly tolerant ewes were confirmed for 12 genes. Metabolic genes that were downregulated (P ≤ 0.032) in lowly tolerant ewes vs. highly tolerant ewes included aldehyde oxidase 1, argininosuccinate lyase, putative steroid dehydrogenase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase1, and sterol carrier protein 2. In contrast, the metabolic gene homeobox was upregulated (P = 0.037) in lowly tolerant ewes. The glutathione peroxidase 3 and inter-α (globulin) inhibitor H4 genes in the stress response cluster were upregulated (P ≤ 0.045) in lowly tolerant ewes. Genes with the greatest FC, but did not cluster within the functional analysis included haptoglobin, which was upregulated (P = 0.024) in lowly tolerant ewes, and fatty acid desaturase 2 and thyroid hormone responsive, both of which were downregulated (P ≤ 0.019) in lowly tolerant ewes. Results from this study indicate that hepatic gene expression differs in ewes identified as lowly tolerant and highly tolerant to increased dietary NO(3)(-).


Animal Reproduction Science | 2009

Effect of maternal fatness on fetal steroids and semi-quantitative real-time PCR expression of receptor genes in sheep ☆

Brenda M. Alexander; Priyanka Singh; Kathy J. Austin; R. R. Cockrum; K. M. Cammack; B. W. Hess; G. E. Moss; Peter W. Nathanielsz; Stephen P. Ford

Sexual differentiation of the brain occurs between d 30 and 70 in the fetal lamb. The objective of this experiment was to determine if maternal fatness affects fetal steroid production and expression of their receptors which may ultimately alter endocrine systems postnatally. Fetuses were collected from ewes fed at either 100% (Control; n=5) or 150% (Fat; n=6) of NRC recommendations from 60 d prior to breeding until collection at 75 d of gestation. Hypothalamic and amygdala neural tissues were collected from twin male/female fetuses. Serum concentrations of testosterone were greater (P<0.001) in male fetuses compared to female fetuses. Further, male fetuses from Fat ewes had greater (P<0.05) serum concentrations of testosterone than male fetuses from Control ewes, but differences in testicular steroidogenic enzyme mRNA were not detected (P=0.18). Quantity of hypothalamic mRNA for estrogen receptor (ER) beta tended (P=0.1) to be influenced by a sex by treatment interaction. Messenger RNA for ER-beta was greater in female fetuses than male fetuses from Control ewes (P=0.05). Although amount of ER-beta mRNA did not differ among male fetuses (P=0.7), amounts tended to be less (P=0.07) in female fetuses from Fat ewes compared to those from Control ewes, and did not differ (P> or =0.8) from male fetuses. Hypothalamic ER-alpha mRNA tended (P=0.1) to be less in fetuses from Fat ewes compared to Control fetuses but was not influenced (P=0.3) by fetal sex or their interaction. Amount of mRNA for hypothalamic progesterone receptor tended (P=0.06) to be greater in male fetuses than female fetuses and tended to be less (P=0.06) in fetuses from Fat ewes than in Control fetuses, but did not differ by any sex by treatment interaction (P=0.6). Hypothalamic RNA for the androgen receptor did not differ by sex, dam nutritional treatment, or the interaction. Likewise, amygdala RNA for the estrogen or androgen receptor did not differ (P> or =0.3) by sex, treatment, or their interaction. Dam fatness appears to decrease the expression of progesterone receptor, ER-alpha, and decrease amount of ER-beta in the female fetuses while increasing circulating concentrations of testosterone in male fetuses. Altered expression of hypothalamic receptor genes by the uterine environment may affect adult responses to stress, sexual behavior and/or the pattern of gonadotropin release in response to gonadal steroids.


Animal | 2011

Hypothalamic expression of genes for appetite regulators and estrogen α , estrogen β and leptin receptors in obese dams and their fetuses

A. B. Breton; R. R. Cockrum; Kathy J. Austin; K. M. Cammack; Stephen P. Ford; B. W. Hess; G. E. Moss; Peter W. Nathanielsz; Brenda M. Alexander

Under- and over-nutrition during gestation may influence fetal hypothalamic development resulting in individuals predisposed to adverse health effects. This study examined fetuses from obese and control ewes to determine whether dam obesity alters hypothalamic expression of fetal appetite regulatory genes. A second objective was to contrast the expression of appetite regulatory genes in ewes that become the most obese to those that remained in moderate body condition on the same energy-rich diet. Multiparous, western white-faced ewes were weighed and individually fed 100% (control) or 150% (obese) of National Research Council requirements from day 60 before mating until day 75 of gestation. At day 75 of gestation, fetuses were collected and weighed. Hypothalamic tissue from fetal lambs and dams was collected and frozen for mRNA extraction. Dam obesity (P ≥ 0.16), fetal sex (P ≥ 0.44) or their interaction (P ≥ 0.42) did not affect the relative expression of fetal hypothalamic regulators of appetite, including neuropeptide Y, agouti-related protein, pro-opiomelanocortin, cocaine- and amphetamine-regulated transcript and receptors for leptin. Maternal obesity at day 75 of gestation in ewes did not affect developmental mechanisms responsible for the expression of fetal appetite regulatory genes and would not be expected to predispose offspring to adult-onset obesity through disrupted appetite regulation at this developmental time point. In the ewe, appetite regulatory genes did not differ (P > 0.20) with ewe adiposity; however, expression of estrogen receptor α, but not β (P = 0.37), in the medial basal hypothalamus was greater (P = 0.04) in obese than in control ewes.


Journal of Animal Physiology and Animal Nutrition | 2012

Effects of high-sulphur water on hepatic gene expression of steers fed fibre-based diets

K. L. Kessler; K. C. Olson; C. L. Wright; Kathy J. Austin; K. McInnerney; P. S. Johnson; R. R. Cockrum; A. M. Jons; K. M. Cammack

Sulphur-induced polioencephalomalacia (sPEM), a neurological disorder affecting ruminants, is frequently associated with the consumption of high-sulphur (S) water and subsequent poor performance. Currently, there is no economical method for S removal from surface water sources, and alternative water sources are typically neither readily available nor cost-effective. Determination of genes differentially expressed in response to high-S water consumption may provide a better understanding of the physiology corresponding to high dietary S and ultimately lead to the development of treatment and prevention strategies. The objective of this study was to determine changes in gene expression in the liver, an organ important for S metabolism, of fibre-fed steers consuming high-S water. For this study, liver tissues were collected on the final day of a trial from yearling steers randomly assigned to low-S water control (566 mg/kg SO4 ; n = 24), high-S water (3651 mg/kg SO4 ; n = 24) or high-S water plus clinoptilolite supplemented at either 2.5% (n = 24) or 5.0% (n = 24) of diet dry matter (DM). Microarray analyses on randomly selected healthy low-S control (n = 4) and high-S (n = 4; no clinoptilolite) steers using the Affymetrix GeneChip Bovine Genome Array revealed 488 genes upregulated (p < 0.05) and 154 genes downregulated (p < 0.05) in response to the high- vs. low-S water consumption. Real-time RT-PCR confirmed the upregulation (p < 0.10) of seven genes involved in inflammatory response and immune functions. Changes in such genes suggest that ruminant animals administered high-S water may be undergoing an inflammation or immune response, even if signs of sPEM or compromised health are not readily observed. Further study of these, and other affected genes, may deliver new insights into the physiology underlying the response to high dietary S, ultimately leading to the development of treatments for high S-affected ruminant livestock.


Animal | 2010

Effect of subacute dietary nitrate on production traits and plasma analytes in Suffolk ewes

R. R. Cockrum; Kathy J. Austin; P. A. Ludden; K. M. Cammack


Theriogenology | 2012

Renin mRNA is upregulated in testes and testicular cells in response to treatment with aflatoxin B1

Kathy J. Austin; R. R. Cockrum; A.M. Jons; Brenda M. Alexander; K. M. Cammack


Small Ruminant Research | 2013

Phenotypic variation in residual feed intake and performance traits in rams

R. R. Cockrum; R.H. Stobart; S.L. Lake; K. M. Cammack

Collaboration


Dive into the R. R. Cockrum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. C. Olson

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

P. S. Johnson

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge