Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. R. J. Arroo is active.

Publication


Featured researches published by R. R. J. Arroo.


Planta | 2006

Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds

Christophe Hano; I. Martin; Ophélie Fliniaux; B. Legrand; Laurent Gutierrez; R. R. J. Arroo; François Mesnard; Frédéric Lamblin; Eric Lainé

The transcription activity of the pinoresinol–lariciresinol reductase (PLR) gene of Linum usitatissimum (so-called LuPLR), a key gene in lignan synthesis, was studied by RT-PCR and promoter–reporter transgenesis. The promoter was found to drive transcription of a GUSint reporter gene in the seed coats during the flax seed development. This fitted well with the tissue localization monitored by semi-quantitative RT-PCR of LuPLR expression. Accumulation of the main flax lignan secoisolariciresinol diglucoside was coherent with LuPLR expression during seed development. This three-way approach demonstrated that the LuPLR gene is expressed in the seed coat of flax seeds, and that the synthesis of PLR enzyme occurs where flax main lignan is found stored in mature seeds, confirming its involvement in SDG synthesis.


Breast Cancer Research | 2008

Antiproliferative and cytostatic effects of the natural product eupatorin on MDA-MB-468 human breast cancer cells due to CYP1-mediated metabolism

Vasilis P. Androutsopoulos; R. R. J. Arroo; John F. Hall; Somchaiya Surichan; Gerry A. Potter

IntroductionThe natural product eupatorin has been reported to have antiproliferative activity in tumour cell lines, but the exact mechanism is unclear. The cytochromes P450 CYP1B1, CYP1A1, and CYP1A2 have been shown to participate in the activation of various xenobiotics, compounds derived from the diet as well as chemotherapeutic drugs. CYP1B1 and CYP1A1 have also been proposed as targets for cancer chemotherapy for their differential and selective overexpression in tumour cells. In this study, we aimed to identify a possible mechanism of action for the antiproliferative effect of eupatorin, which can be attributed to CYP1 family-mediated metabolism.MethodsThe study focuses on the antiproliferative action of eupatorin on the human breast carcinoma cell line MDA-MB-468 and on a cell line derived from normal mammary tissue, MCF-10A. The cytotoxicity of the flavone, its effect on the cell cycle of the abovementioned cell lines, and its metabolism by CYP1 family enzymes were examined.ResultsEupatorin showed a dose-dependent inhibitory effect of cell growth on MDA-MB-468 cells with a submicromolar median inhibition concentration (IC50) whereas the IC50 of this compound in MCF-10A cells was considerably higher. The antiproliferative effect, as measured by EROD (ethoxyresorufin-O-deethylase) assay and Western immunoblotting, was attributed mainly to CYP1A1 expression in MDA-MB-468 cells but not in MCF-10A cells. Moreover, CYP1 family enzymes were shown to metabolise eupatorin in vitro to the flavone cirsiliol and two other unidentified metabolites. Metabolism of eupatorin was also detected in MDA-MB-468 cell cultures, whereas metabolism by MCF-10A cells was negligible. Eupatorin was further shown to arrest the cell cycle of the CYP1-expressing cell line MDA-MB-468 in G2/M phase, whereas no effect was observed in MCF-10A cells, which do not express CYP1 enzymes. The effect of eupatorin on the MDA-MB-468 cell cycle could be reversed by co-application of the CYP1 inhibitor acacetin.ConclusionThe flavone eupatorin is selectively activated in breast cancer cells, but not in normal breast cells, due to CYP1 family metabolism. This provides a basis for selectivity which is desired against breast tumour cells. In this sense, eupatorin is shown by this study to be a very promising chemopreventative candidate that should be examined further in an in vivo study.


Planta | 2002

Biosynthesis of podophyllotoxin in Linum album cell cultures

Veronique Seidel; Jörg Windhövel; Graham Eaton; A. Wilhelm Alfermann; R. R. J. Arroo; Manuel Medarde; Maike Petersen; Jack G. Woolley

Abstract. Cell cultures of Linum album Kotschy ex Boiss. (Linaceae) showing high accumulation of the lignan podophyllotoxin (PTOX) were established. Enzymological studies revealed highest activities of phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-hydroxycinnamate:CoA ligase and cinnamoyl-CoA:NADP oxidoreductase immediately prior to PTOX accumulation. To investigate PTOX biosynthesis, feeding experiments were performed with [2-13C]3′,4′-dimethoxycinnamic acid, [2-13C]3′,4′-methylenedioxycinnamic acid (MDCA), [2-13C]3′,4′,5′-trimethoxycinnamic acid, [2-13C]sinapic acid, [2-13C]- and [2,3-13C2]ferulic acid. Analysis of the metabolites by HPLC coupled to tandem mass spectrometry revealed incorporation of label from ferulic acid into PTOX and deoxypodophyllotoxin (DOP). In addition, MDCA was also unambiguously incorporated intact into PTOX. These observations suggest that in L. album both ferulic acid and methylenedioxy-substituted cinnamic acid can be incorporated into lignans. Furthermore, it appears that, in this species, the hydroxylation of DOP is a rate-limiting point in the pathway leading to PTOX.


Toxicology | 2009

CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells.

Vasilis P. Androutsopoulos; K. C. Ruparelia; R. R. J. Arroo; Aristidis M. Tsatsakis; Demetrios A. Spandidos

Among the different mechanisms proposed to explain the cancer-protecting effect of dietary flavonoids, substrate-like interactions with cytochrome P450 CYP1 enzymes have recently been explored. In the present study, the metabolism of the flavonoids chrysin, baicalein, scutellarein, sinensetin and genkwanin by recombinant CYP1A1, CYP1B1 and CYP1A2 enzymes, as well as their antiproliferative activity in MDA-MB-468 human breast adenocarcinoma and MCF-10A normal breast cell lines, were investigated. Baicalein and 6-hydroxyluteolin were the only conversion products of chrysin and scutellarein metabolism by CYP1 family enzymes, respectively, while baicalein itself was not metabolized further. Sinensetin and genkwanin produced a greater number of metabolites and were shown to inhibit strongly in vitro proliferation of MDA-MB-468 cells at submicromolar and micromolar concentrations, respectively, without essentially affecting the viability of MCF-10A cells. Cotreatment of the CYP1 family inhibitor acacetin reversed the antiproliferative activity noticed for the two flavones in MDA-MB-468 cells to 13 and 14 microM respectively. In contrast chrysin, baicalein and scutellarein inhibited proliferation of MDA-MB-468 cells to a lesser extent than sinensetin and genkwanin. The metabolism of genkwanin to apigenin and of chrysin to baicalein was favored by CYP1B1 and CYP1A1, respectively. Taken together the data suggests that CYP1 family enzymes enhance the antiproliferative activity of dietary flavonoids in breast cancer cells, through bioconversion to more active products.


Annals of Botany | 2009

Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua

Michael J. Davies; Christopher J. Atkinson; Corrinne Burns; Jack G. Woolley; Neil A. Hipps; R. R. J. Arroo; Nigel Dungey; Trevor Robinson; Paul Brown; Ian Flockart; Colin Hill; Lydia Smith; Steven Bentley

BACKGROUND AND AIMS The resurgence of malaria, particularly in the developing world, is considerable and exacerbated by the development of single-gene multi-drug resistances to chemicals such as chloroquinone. Drug therapies, as recommended by the World Health Organization, now include the use of antimalarial compounds derived from Artemisia annua--in particular, the use of artemisinin-based ingredients. Despite our limited knowledge of its mode of action or biosynthesis there is a need to secure a supply and enhance yields of artemisinin. The present study aims to determine how plant biomass can be enhanced while maximizing artemisinin concentration by understanding the plants nutritional requirements for nitrogen and potassium. METHODS Experiments were carried out, the first with differing concentrations of nitrogen, at 6, 31, 56, 106, 206 or 306 mg L(-1) being applied, while the other differing in potassium concentration (51, 153 or 301 mg L(-1)). Nutrients were supplied in irrigation water to plants in pots and after a growth period biomass production and leaf artemisinin concentration were measured. These data were used to determine optimal nutrient requirements for artemisinin yield. KEY RESULTS Nitrogen nutrition enhanced plant nitrogen concentration and biomass production successively up to 106 mg N L(-1) for biomass and 206 mg N L(-1) for leaf nitrogen; further increases in nitrogen had no influence. Artemisinin concentration in dried leaf material, measured by HPLC mass spectroscopy, was maximal at a nitrogen application of 106 mg L(-1), but declined at higher concentrations. Increasing potassium application from 51 to 153 mg L(-1) increased total plant biomass, but not at higher applications. Potassium application enhanced leaf potassium concentration, but there was no effect on leaf artemisinin concentration or leaf artemisinin yield. CONCLUSIONS Artemisinin concentration declined beyond an optimal point with increasing plant nitrogen concentration. Maximization of artemisinin yield (amount per plant) requires optimization of plant biomass via control of nitrogen nutrition.


Cancer Letters | 2009

Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450

Vasilis P. Androutsopoulos; Nicola Wilsher; R. R. J. Arroo; Gerry A. Potter

Breast cancer is a major cause of death worldwide. Amongst the various forms of treatment chemoprevention is favoured and natural products such as the dietary flavonoids have been examined for their cancer preventative activity. In this study we investigated the anticancer activity of the flavonoid diosmetin, as a result of cytochrome P450 CYP1 metabolism. Diosmetin was metabolized to luteolin via an aromatic demethylation reaction on the B-ring from CYP1A1, CYP1B1 and the hepatic isozyme CYP1A2. CYP1A1 and CYP1A2 also produced additional unidentified metabolites. CYP1B1 showed the lowest apparent KM and CYP1A1 the highest apparent Kcat. Diosmetin was also metabolized to luteolin in estrogen receptor positive breast cell-line (MCF-7 cells) preinduced for 24 h with the potent CYP1 inducer 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Treatment of MCF-7 cells with TCDD caused bioactivation of diosmetin enhancing its cytotoxicity. Taken together these data suggest that the flavonoid diosmetin is metabolised to the more active molecule luteolin by CYP1 family enzymes.


Phytochemistry Reviews | 2002

Plant cell factories as a source for anti-cancer lignans

R. R. J. Arroo; A. W. Alfermann; M. Medarde; Maike Petersen; Niesko Pras; Jack G. Woolley

The review places podophyllotoxin, a powerful anti-cancer material used in clinical treatment of small cell cancers, in focus. The economical synthesis of podophyllotoxin is not feasible and demand for this material outstrips supply. At present, Podophyllum hexandrum (Indian May apple) is the commercial source but it grows in an inhospitable region (the Himalayas) where it is collected from wild stands. Furthermore, the plant is now an endangered species. Alternative sources of podophyllotoxin are considered, e.g., the supply of podophyllotoxin and related lignans by establishing plant cell cultures that can be grown in fermentation vessels. Increase of product yields, by variation of medium and culture conditions or by varying the channelling of precursors into side-branches of the biosynthetic pathway by molecular approaches, are discussed.


Journal of Ethnopharmacology | 2012

Efficacy of Daphne oleoides subsp. kurdica used for wound healing: identification of active compounds through bioassay guided isolation technique.

Ipek Süntar; Esra Küpeli Akkol; Hikmet Keles; Erdem Yesilada; Satyajit D. Sarker; R. R. J. Arroo; Turhan Baykal

ETHNOPHARMACOLOGICAL RELEVANCE In Turkish traditional medicine, the aerial parts of Daphne oleoides Schreber subsp. kurdica (DOK) have been used to treat malaria, rheumatism and for wound healing. The aim was to evaluate the ethnopharmacological usage of the plant using in vivo and in vitro pharmacological experimental models, and to perform bioassay-guided fractionation of the 85% methanolic extract of DOK for the isolation and identification of active wound-healing component(s) and to elucidate possible mechanism of the wound-healing activity. MATERIALS AND METHODS In vivo wound-healing activity was evaluated by the linear incision and the circular excision wound models. Anti-inflammatory and antioxidant activities, which are known to support the wound healing process, were also assessed by the Whittle method and the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical-scavenging assays, respectively. The total phenolic content of the extract and subextracts was estimated to establish any correlation between the phenolic content and the antioxidant activity. The methanolic extract of DOK was subjected to various chromatographic separation techniques leading to the isolation and identification of the active component(s). Furthermore, in vitro hyaluronidase, collagenase and elastase enzymes inhibitory activity assays were conducted on the active components to explore the activity pathways of the remedy. RESULTS After confirmation of the wound-healing activity, the methanolic extract was subjected to successive solvent partitioning using solvents of increasing polarity creating five subextracts. Each subextract was tested on the same biological activity model and the ethyl acetate (EtOAc) subextract had the highest activity. The EtOAc subextract was subjected to further chromatographic separation for the isolation of components 1, 2 and 3. The structures of these compounds were elucidated as daphnetin (1), demethyldaphnoretin 7-O-glucoside (2) and luteolin-7-O-glucoside (3). Further in vivo testing revealed that luteolin-7-O-glucoside was responsible for the wound-healing activity of the aerial parts. It was also found to exert significant anti-inflammatory, antioxidant, anti-hyaluronidase and anti-collagenase activities. CONCLUSION The present study explored the wound-healing potential of Daphne oleoides subsp. kurdica. Through bioassay-guided fractionation and isolation techniques, luteolin-7-O-glucoside was determined as the main active component of the aerial parts. This compound exerts its activity through inhibition of hyaluronidase and collagenase enzymes activity as well as interfering with the inflammatory stage.


Phytochemistry Reviews | 2014

Biotechnological approaches for producing aryltetralin lignans from Linum species

S. Malik; O. Bíba; J. Grúz; R. R. J. Arroo; Miroslav Strnad

The genus Linum includes more than 230 globally distributed species, which have attracted great interest as they grow rapidly and are already sources of commercially important products, e.g. flax and linseed oil. Furthermore, they contain lignans such as podophyllotoxin (PTOX), deoxypodophyllotoxin (a precursor of both PTOX and 6-methoxypodophyllotoxin, the latter via β-peltatin, and β-peltatin-A-methyl ether) and various derivatives. Lignans are natural compounds derived from two 8,8′-linked C6C3 (propylbenzene) units. PTOX is an aryltetralin-lignan with strong cytotoxic and antiviral activities. Thus, it is used as a starting material for producing various semisynthetic derivatives that are widely used in chemotherapy, such as etoposide, teniposide and etopophos. It is currently produced largely from Podophyllum hexandrum and P. peltatum, slow-growing endangered species of the Berberidaceae. Hence, the possibility of producing it from Linum, especially members of section Syllinum under either in vitro or ex vitro conditions is highly attractive. This review summarizes related research, focusing on in vitro production of aryltetralin lignans from various Linum species and possible biotechnological strategies to improve their production. The key pathways, enzymes and genes involved are highlighted and future challenges that must be met to allow viable, large-scale production of this anticancer drug lead are discussed.


Food and Chemical Toxicology | 2012

Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells.

Somchaiya Surichan; Vasilis P. Androutsopoulos; Stavros Sifakis; Eleni Koutala; Aristidis M. Tsatsakis; R. R. J. Arroo; Michael R. Boarder

Recent studies have demonstrated cytochrome P450 CYP1-mediated metabolism and CYP1-enzyme induction by naturally occurring flavonoids in cancer cell line models. The arising metabolites often exhibit higher activity than the parent compound. In the present study we investigated the CYP1-mediated metabolism of the citrus polymethoxyflavone nobiletin by recombinant CYP1 enzymes and MCF7 breast adenocarcinoma cells. Incubation of nobiletin in MCF7 cells produced one main metabolite (NM1) resulting from O-demethylation in either A or B rings of the flavone moiety. Among the three CYP1 isoforms, CYP1A1 exhibited the highest rate of metabolism of nobiletin in recombinant CYP microsomal enzymes. The intracellular CYP1-mediated bioconversion of the flavone was reduced in the presence of the CYP1A1 and CYP1B1-selective inhibitors α-napthoflavone and acacetin. In addition nobiletin induced CYP1 enzyme activity, CYP1A1 protein and CYP1B1 mRNA levels in MCF7 cells at a concentration dependent manner. MTT assays in MCF7 cells further revealed that nobiletin exhibited significantly lower IC50 (44 μM) compared to cells treated with nobiletin and CYP1A1 inhibitor (69 μM). FACS analysis demonstrated cell a cycle block at G1 phase that was attenuated in the presence of CYP1A1 inhibitor. Taken together the data suggests that the dietary flavonoid nobiletin induces its own metabolism and in turn enhances its cytostatic effect in MCF7 breast adenocarcinoma cells, via CYP1A1 and CYP1B1 upregulation.

Collaboration


Dive into the R. R. J. Arroo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Zeka

University of L'Aquila

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge