R. Rapp
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Rapp.
Physical Review C | 2005
L. Grandchamp; H. van Hees; D. Sun; S. Lumpkins; R. Rapp
Properties of bottomonia (Upsilon, chi_b and Upsilon) in the Quark-Gluon Plasma (QGP) are investigated by assessing inelastic reaction rates and their interplay with open-bottom states (b-quarks or B-mesons) and color-screening. The latter leads to vanishing quarkonium binding energies at sufficiently high temperatures (close to the dissolution point), which, in particular, renders standard gluo-dissociation, g+Upsilon -> b + b-bar, inefficient due to a substantial reduction in final-state phase space. This problem is overcome by invoking a quasifree destruction mechanism, g,q,q-bar + Upsilon -> g,q,q-bar + b + b-bar, as previously introduced for charmonia. The pertinent reaction rates are implemented into a kinetic theory framework to evaluate the time evolution of bottomonia in heavy-ion reactions at RHIC and LHC within an expanding fireball model. While bottom quarks are assumed to be exclusively produced in primordial nucleon-nucleon collisions, their thermal relaxation times in the QGP, which importantly figure into Upsilon-formation rates, are estimated according to a recent Fokker-Planck treatment. Predictions for the centrality dependence of Upsilon production are given for upcoming experiments at RHIC and LHC. At both energies, Upsilon suppression turns out to be the prevalent effect.
Physical Review C | 2005
L. Grandchamp; S. Lumpkins; D. Sun; H. van Hees; R. Rapp
Properties of bottomonia (Upsilon, chi_b and Upsilon) in the Quark-Gluon Plasma (QGP) are investigated by assessing inelastic reaction rates and their interplay with open-bottom states (b-quarks or B-mesons) and color-screening. The latter leads to vanishing quarkonium binding energies at sufficiently high temperatures (close to the dissolution point), which, in particular, renders standard gluo-dissociation, g+Upsilon -> b + b-bar, inefficient due to a substantial reduction in final-state phase space. This problem is overcome by invoking a quasifree destruction mechanism, g,q,q-bar + Upsilon -> g,q,q-bar + b + b-bar, as previously introduced for charmonia. The pertinent reaction rates are implemented into a kinetic theory framework to evaluate the time evolution of bottomonia in heavy-ion reactions at RHIC and LHC within an expanding fireball model. While bottom quarks are assumed to be exclusively produced in primordial nucleon-nucleon collisions, their thermal relaxation times in the QGP, which importantly figure into Upsilon-formation rates, are estimated according to a recent Fokker-Planck treatment. Predictions for the centrality dependence of Upsilon production are given for upcoming experiments at RHIC and LHC. At both energies, Upsilon suppression turns out to be the prevalent effect.
arXiv: High Energy Physics - Phenomenology | 2007
H. van Hees; V. Greco; R. Rapp
This writeup is a compilation of the predictions for the forthcoming Heavy Ion Program at the Large Hadron Collider, as presented at the CERN Theory Institute Heavy Ion Collisions at the LHC - Last Call for Predictions, held from 14th May to 10th June 2007.We present predictions for the nuclear modification factor and elliptic flow of D and B mesons, as well as of their decay electrons, in semicentral Pb-Pb collisions at the LHC. Heavy quarks are propagated in a Quark-Gluon Plasma using a relativistic Langevin simulation with drag and diffusion coefficients from elastic interactions with light anti-/quarks and gluons, including non-perturbative resonance scattering. Hadronization at T_c is performed within a combined coalescence-fragmentation scheme.We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.
arXiv: High Energy Physics - Phenomenology | 2007
H. van Hees; R. Rapp
This writeup is a compilation of the predictions for the forthcoming Heavy Ion Program at the Large Hadron Collider, as presented at the CERN Theory Institute Heavy Ion Collisions at the LHC - Last Call for Predictions, held from 14th May to 10th June 2007.We present predictions for the nuclear modification factor and elliptic flow of D and B mesons, as well as of their decay electrons, in semicentral Pb-Pb collisions at the LHC. Heavy quarks are propagated in a Quark-Gluon Plasma using a relativistic Langevin simulation with drag and diffusion coefficients from elastic interactions with light anti-/quarks and gluons, including non-perturbative resonance scattering. Hadronization at T_c is performed within a combined coalescence-fragmentation scheme.We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.
Physical Review C | 2006
L. Grandchamp; S. Lumpkins; D. Sun; H. van Hees; R. Rapp
Properties of bottomonia (Upsilon, chi_b and Upsilon) in the Quark-Gluon Plasma (QGP) are investigated by assessing inelastic reaction rates and their interplay with open-bottom states (b-quarks or B-mesons) and color-screening. The latter leads to vanishing quarkonium binding energies at sufficiently high temperatures (close to the dissolution point), which, in particular, renders standard gluo-dissociation, g+Upsilon -> b + b-bar, inefficient due to a substantial reduction in final-state phase space. This problem is overcome by invoking a quasifree destruction mechanism, g,q,q-bar + Upsilon -> g,q,q-bar + b + b-bar, as previously introduced for charmonia. The pertinent reaction rates are implemented into a kinetic theory framework to evaluate the time evolution of bottomonia in heavy-ion reactions at RHIC and LHC within an expanding fireball model. While bottom quarks are assumed to be exclusively produced in primordial nucleon-nucleon collisions, their thermal relaxation times in the QGP, which importantly figure into Upsilon-formation rates, are estimated according to a recent Fokker-Planck treatment. Predictions for the centrality dependence of Upsilon production are given for upcoming experiments at RHIC and LHC. At both energies, Upsilon suppression turns out to be the prevalent effect.
arXiv: High Energy Physics - Phenomenology | 2006
H. van Hees; R. Rapp
Archive | 2009
L. Ravagli; H. van Hees; R. Rapp
Archive | 2008
Hendrik van Hees; R. Rapp
Physical Review C | 2006
L. Grandchamp; S. Lumpkins; Din Kow Sun; Hendrik van Hees; R. Rapp
Physical Review C | 2006
L. Grandchamp; S. Lumpkins; D. Sun; H. van Hees; R. Rapp