R. Roth
University of Nebraska Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Roth.
Chemico-Biological Interactions | 1983
Ercole L. Cavalieri; Eleanor G. Rogan; R. Roth; Richard K. Saugier; Alaeddin Hakam
The ionization potentials (IP) of 91 alternant polycyclic aromatic hydrocarbons (PAH) were determined from the absorption maximum of the charge-transfer complex of each hydrocarbon and chloranil in chloroform. The extent of horseradish peroxidase (HRP)-catalyzed binding to DNA of 14 hydrocarbons of varying IP was measured. Only hydrocarbons with IP less than approx. 7.35 eV were significantly bound to DNA. These results provide further evidence that HRP-mediated binding of PAH to DNA occurs by one-electron oxidation and indicate that hydrocarbons must have IP less than approx. 7.35 eV to be activated by one-electron oxidation. Thus, determination of IP and HRP-catalyzed binding to DNA can offer some guidelines for selecting aromatic hydrocarbons which might undergo carcinogenic activation by this mechanism.
Chemico-Biological Interactions | 1986
Eleanor G. Rogan; Ercole L. Cavalieri; Betty Walker; Ramadas Balasubramanian; Peter Wislocki; R. Roth; Richard K. Saugier
Studies were performed to determine the direct mutagenicity of the acetates and some bromides and sulfates of hydroxymethyl polycyclic aromatic hydrocarbons in S. typhimurium strains TA98 and TA100. Benzylic acetates, bromides and sulfates were synthesized and characterized. The compounds tested were benzyl alcohol, 5-hydroxymethylchrysene, 1-hydroxymethylpyrene, 6-hydroxymethylbenzo[a]pyrene, 6-(2-hydroxyethyl)benzo[a]pyrene, 6-hydroxymethylanthanthrene, 9-hydroxymethylanthracene, 9-hydroxymethyl-10-methylanthracene, 7-hydroxymethylbenz[a]anthracene, 7-(2-hydroxyethyl)benz[a]anthracene, 12-hydroxymethylbenz[a]anthracene, 7-hydroxymethyl-12-methylbenz[a]anthracene, 12-hydroxymethyl-7-methylbenz[a]anthracene, 1-hydroxy-3-methylcholanthrene, 2-hydroxy-3-methylcholanthrene, 3-hydroxy-3, 4-dihydrocyclopental[cd]pyrene and 4-hydroxy-3, 4-dihydrocyclopental[cd]pyrene. The benzylic sulfate esters of 6-hydroxymethylbenzo[a]pyrene and 7-hydroxymethylbenz[a]anthracene were the most mutagenic compounds, whereas the aliphatic sulfate ester of 7-hydroxyethylbenz[a]anthracene did not cause an increase in mutations above background. All meso-anthracenic benzylic acetate esters were mutagenic in both strains with various degrees of activity, whereas the corresponding non-benzylic esters were inactive, as expected. Of the non-meso-benzylic acetate esters, only the 3-acetoxy-3, 4-dihydrocyclopenta[cd]pyrene was mutagenic. In the benzylic bromide series, only the eight mesoanthracenic were mutagenic, whereas benzyl bromide and 5-bromomethylchrysene were inactive. The aliphatic bromides, 6-(2-bromoethyl)benzo[a]pyrene and 7-(2-bromoethyl)benz[a]anthracene did not display significant activity. The potencies of the acetate esters more accurately reflect the mutagenicity because the rate of solvolysis did not compete with the reactivity of the esters with bacterial DNA. In the case of benzylic sulfates and bromides, the rate of solvolysis was very rapid and could have diminished the level of mutagenicity, depending on the assay conditions. These results demonstrate that meso-anthracenic benzylic acetates, sulfates and bromides are mutagenic, whereas benzylic acetate esters attached to other carbon atoms are inactive.
Chemico-Biological Interactions | 1978
Eleanor G. Rogan; R. Roth; P. Katomski; J. Benderson; Ercole L. Cavalieri
Loss of tritium from specific positions in [3H,14C] aromatic hydrocarbons can elucidate their binding site(s) to DNA and RNA and indicate the mechanism of activation. Studies of tritium loss from [6-3H,14C]benzo[a]pyrene (B[a]P), [1,3-3H,14C]B[a]P, [1,3,6-3H,14C]B[a]P, [6,7-3H,14C]B[a]P, and [7-3H,14C]B[a]P were conducted in vitro using liver nuclei and microsomes from 3-methylcholanthrene-induced Sprague-Dawley rats and in vivo on the skin of Charles River CD-1 mice. The relative loss of tritium from [3H, 14C]B[a]P was measured after binding to skin DNA and RNA, to nuclear DNA, and to native and denatured calf thymus and rat liver DNAs and poly(G) by microsomal activation. In skin, nuclei, and microsomes plus native DNA, virtually all B[a]P binding occurred at positions 1,3 and 6; while with microsomes plus denatured DNA or poly(G), B[a]P showed no binding at the 6 position and a small amount at the 1 and 3 positions. In vivo and with nuclei, binding at the 6 position predominated. Little loss of tritium from the 7 position was seen; this was expected because binding at this position is not thought to occur. This confirms the interpretation of loss of tritium as an indication of binding at a given position. These results demonstrate that the use of microsomes to activate B[a]P is not a valid model system for delineating the in vivo mechanism of B[a]P activation, and support previous evidence for one-electron oxidation as the mechanism of activation of hydrocarbons in binding to nucleic acids.
Chemico-Biological Interactions | 1978
E. Cavalieri; R. Roth; C. Grandjean; J. Althoff; K. Patil; S. Liakus; S. Marsh
The ability was tested of appropriate substituents of benzo[a]pyrene (BP) at C-6 to decrease or suppress the carcinogenic activity for these BP derivatives relative to the parent compound. 8-week-old female Swiss mice in 9 groups of 30 were treated on the back with 0.2 mumol of compound in acetone 4 times weekly for 20 weeks. The following compounds were administered: BP, 6-methylbenzo[a]pyrene (BP-6-CH3), 6-hydroxymethylbenzo[a]pyrene (BP-6-CH2OH), benzo[a]pyrene-6-carboxaldehyde (BP-6-CHO), benzo[a]pyrene-6-carboxylic acid, 6-methoxybenzo[a]pyrene, 6-acetoxybenzo[a]pyrene, 6-bromobenzo[a]pyrene, and 6-iodobenzo[a]pyrene. Two additional groups received BP or BP-6-CH3 twice weekly for 20 weeks at a total dose 25% of that above. In addition, the metabolism of selected 6-substituted BP derivatives was studied, using mouse skin homogenates in vitro and mouse skin in vivo. Only four compounds were carcinogenic; the order of potency was BP greater than BP-6-CH3 greater than BP-6-CH2OH and BP-6-CHO. The difference in carcinogenicity between BP-6-CH2OH and BP-6-CHO could not be assessed by this experiment. In a further tumorigenesis experiment the carcinogenicity of BP-6-CH2OH was compared to that of BP-6 CHO, BP-6-CH3 and 6-hydroxymethylbenzo[a]pyrere sulfate ester (BP-6-CH2OSO3Na) on mouse skin. 9-week-old female Swiss mice in groups of 28 were treated at three dose levels with 0.8, 0.2 and 0.05 mumol of compounds in dioxane--dimethyl sulfoxide (75 : 25) twice weekly for 40 weeks. After 40 experimental weeks BP-6-CH2OSO3Na proved to be a more potent carcinogen than BP-6-CH2OH, which, in turn was more active than BP-6-CHO. The greater carcinogenicity of BP-6-CH3 relative to BP-6-CH2OH and BP-6-CHO is confirmed, suggesting that BP-6-CH2OH is not a proximate carcinogenic metabolite for BP-6-CH3. Since BP-6-CHO is a weaker carcinogen than BP-6-CH2OH and is efficiently reduced metabolically to BP-6-CH2OH, the latter compound may be a common proximal carcinogenic metabolite. The stronger potency of BP-6-CH2OSO3Na, compared to its alcohol, suggests that an ester of BP-6-CH2OH might be the ultimate alkylating compound reacting with cellular nucleophiles.
Chemico-Biological Interactions | 1978
E. Cavalieri; R. Roth; J. Althoff; C. Grandjean; K. Patil; S. Marsh; D. Mclaughlin
Trapping of 3-methylcholanthrene (MC) radical cation by nucleophilic compounds occurs specifically at the 1-carbon atom. With the purpose of providing more evidence for the hypothesis that the critical mechanism of activation of MC is one-electron oxidation, the carcinogenicity of MC was compared to that of 1-hydroxy-3-methylcholanthrene (MC-1-OH), 3-methylcholanthrene-1-one (MC-1-one), 2-hydroxy-3-methylcholanthrene (MC-2-OH), 3-methylcholanthrene-2-one (MC-2-one) and 3-methylcholanthrylene (MCL) by repeated application on mouse skin. Seven-week-old female Swiss mice in 6 groups of 30 were treated on the back with 0.2 mumol of compound in acetone twice weekly for 20 weeks. In addition, the metabolism of MC and its derivatives was studied using mouse skin homogenates. The compounds tested were classified according to carcinogenicity in 4 groups: MC and MC-2-OH, the strongest carcinogens; MC-2-one and MCL, weaker than MC and MC-2-OH; MC-1-OH, the weakest carcinogen; and MC-1-one, non-carcinogenic. These results support the hypothesis that one-electron oxidation for MC, MC-2-OH and MC-1-one might be the critical mechanism of carcinogenic activation, with C-1 the binding site to cellular nucleophiles. The carcinogenic effect of MC-1-OH is speculated to be the formation of an ester bearing a good leaving group, which might be the ultimate alkylating compound in the in vivo reaction. The lack of carcinogenic activity for MC-1-one may be attributed to absence of nucleophilic trapping at C-1 via the radical cation pathway as well as the inability of mouse skin to reduce MC-1-one to the carcinogenic MC-1-OH.
Chemico-Biological Interactions | 1980
Eleanor G. Rogan; R. Roth; Patricia A. Katomski-Beck; Jeanne R. Laubscher; Ercole L. Cavalieri
ATP mediates covalent binding of hydroxymethyl derivatives of aromatic hydrocarbons to DNA. This non-enzymatic reaction has been studied with 6-[14C]hydroxymethylbenzo[alpha]pyrene (]14C]BP-6-CH2OH) and 7-[14C]-hydroxymethylbenz[alpha]anthracene ([14C]BA-7-CH2OH) at 37 degrees C in Tris buffer (pH 7.0). While ADP mediates the reaction 25-50% as well as ATP, six other possible phosphate donors including AMP were inactive as cofactors. A complex response to ATP occurred in which low binding of BP-6-CH2OH or BA-7-CH2OH was observed at concentrations of ATP below 2.5 mM, but a greater than linear response to higher concentrations of ATP was observed until ATP was saturating. Binding of the substrates to RNA was much lower than to DNA. Fluorescence spectra of BP-6-CH2OH bound to DNA were almost identical to the spectra of 6-bromomethylbenzo[alpha]pyrene bound to DNA and free 6-methylbenzo]alpha]pyrene, indicating that ATP-mediated binding of BP-6-CH2OH to DNA occurs at the 6-methyl group. The fate of ATP and ADP in the binding reaction of BP-6-CH2OH was examined by thin layer chromatography. Loss of one phosphate group occurs during the reaction. With ATP the rate of loss is about 100-fold greater than the rate of binding of BP-6-CH2OH to DNA. This implies that the binding reaction proceeds through formation of a presumed reactive and unstable phosphate ester intermediate which then inefficiently binds to DNA.
Journal of Organic Chemistry | 1976
Ercole L. Cavalieri; R. Roth
Archive | 1978
R. Roth; C. Grandjean; E. Cavalieri
Federation Proceedings | 1978
E. Rogan; P. Katomski; R. Roth; E. Cavalieri
Archive | 1977
E. Rogan; R. Roth; E. Cavalieri