Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Ruhnke is active.

Publication


Featured researches published by R. Ruhnke.


Atmospheric Environment | 1998

Intercomparison of the gas-phase chemistry in several chemistry and transport models

M. Kuhn; P.J.H. Builtjes; D. Poppe; David Simpson; William R. Stockwell; Yvonne Andersson-Sköld; A. Baart; M. Das; F. Fiedler; Øystein Hov; F. Kirchner; P. A. Makar; Jana B. Milford; M. G. M. Roemer; R. Ruhnke; A. Strand; B. Vogel; H. Vogel

An intercomparison of nine chemical mechanisms (e.g. ADOM, CBM-IV, EMEP, RADM2) as used by 12 contributing groups was conducted. The results for three scenarios are presented covering remote situations with a net O3 loss of around 2.7 ppb (LAND and FREE) and a moderately polluted situation with O3 formation of around 100 ppb (PLUME1) over a 5 day simulation period. The overall tendencies (i.e. the total net production/loss over 5 days) for O3 show a r.m.s. error of 38, 15 and 16%; for H2O2 the errors are 76, 23 and 30% (for LAND, FREE, PLUME1). In terms of ozone production in PLUME1, the most productive mechanisms are EMEP and IVL, the RADM-type mechanisms lie in the mid-range and the CBM-IV type mechanisms fall at the bottom of the range. The differences in H2O2 can partly be explained by an incorrect use of the HO2 + HO2 rate constant and by differences in the treatment of the peroxy radical interactions. In the PLUME1 case the r.m.s. error of the PAN tendency was found to be 29%. Differences between mechanisms for the HO radical are 10, 15 and 19% and for the NO3 radical 35, 16 and 40% (for LAND, FREE, PLUME1) in terms of the r.m.s. error of the results for a 12 h time period centred around the last noon (HO), respectively, a 8 h time period centred around the last midnight (NO3) of simulation. Especially for NO3 some differences are due to different numerical treatment of photolytic processes in the models. Large differences between mechanisms are observed for higher organic peroxides and higher aldehydes with a r.m.s. error of around 50% for the final concentration in PLUME1. The protocol of the intercomparison is given in the appendix, so that the comparison could be repeated for the purpose of mechanism development and sensitivity studies.


Journal of Geophysical Research | 2001

Three-dimensional model simulations of SF6 with mesospheric chemistry

T. Reddmann; R. Ruhnke; W. Kouker

Multiannual integrations with the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) have been performed using meteorological analyses of vorticity and divergence up to 10 hPa to analyze the influence of a simplified SF 6 mesospheric chemistry on estimation of mean age of air and to compare profiles of SF 6 mixing ratios observed in the stratosphere with model simulations. The chemical degradation scheme includes electron attachment of SF 6 and subsequent reactions of SF 6 - , such as photodetachment and charge transfer with ozone. Several combinations of reaction rate constants and electron profiles have been tested. Good agreement with observations is found for inert SF 6 transport. However, when mesospheric loss is inclnded in the model, significant deviations are found for polar winter observations above 25 km. Chemical loss by electron attachment without reactions yielding SF 6 again is not compatible with observations. The atmospheric lifetime of SF 6 spans 400 to 10,000 years, depending on the assumed loss mechanism and the value for the electron density in the stratosphere.


Journal of Geophysical Research | 2005

An enhanced HNO3 second maximum in the Antarctic midwinter upper stratosphere 2003

G. P. Stiller; Gizaw Mengistu Tsidu; T. von Clarmann; N. Glatthor; M. Höpfner; S. Kellmann; A. Linden; R. Ruhnke; H. Fischer; M. López-Puertas; B. Funke; S. Gil-López

Vertical profiles of stratospheric HNO 3 were retrieved from limb emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the Envisat research satellite during the Antarctic winter 2003. A high second maximum of HNO 3 was found around 34 km altitude with abundances up to 14 ppbv HNO 3 during July. Similar high abundances have not been reported in the literature for previous winters, but for the subsequent Arctic winter 2003/2004, after severe perturbations due to solar proton events. The second HNO 3 maximum in the Antarctic stratosphere started to develop in early June 2003, reached peak values during July 2003, and decreased to about 7 ppbv at the end of August while being continuously transported downward before finally forming a single HNO 3 layer over all latitudes in the lower stratosphere together with the out-of-vortex primary HNO 3 maximum. The HNO 3 decrease in August 2003 was correlated with photochemical buildup of other NO v species as ClONO 2 and NO x . From the time scales observed, it can be ruled out that the 2003 long-term HNO 3 enhancements were caused by local gas phase reactions immediately after the solar proton event on 29 May 2003. Instead, HNO 3 was produced by ion cluster chemistry reactions and/or heterogeneous reactions on sulfate aerosols via N 2 O 5 from high amounts of NOy being continuously transported downward from the lower thermosphere during May to August.


Journal of Geophysical Research | 2002

NOy partitioning and budget and its correlation with N2O in the Arctic vortex and in summer midlatitudes in 1997

G. Wetzel; H. Oelhaf; R. Ruhnke; F. Friedl-Vallon; Anne Kleinert; W. Kouker; G. Maucher; T. Reddmann; M. Seefeldner; M. Stowasser; O. Trieschmann; T. von Clarmann; H. Fischer

Vertical profiles of the most important species of nocturnal total reactive nitrogen (NO y = NO 2 + HNO 3 + CIONO 2 + 2 N 2 O 5 + HO 2 NO 2 ) together with its source gas N 2 O were retrieved from infrared limb emission spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding, Balloon-borne version (MIPAS-B) instrument inside the late winter arctic vortex from Kiruna (Sweden, 68°N) on 24 March 1997 and in summer midlatitudes from Gap (France, 44°N) on 2 July 1997. The measured data were compared to calculations performed with the three-dimensional chemistry transport model (CTM) Karlsruhe Simulation model of the Middle Atmosphere (KASIMA). The results show that in the late winter arctic vortex most of the available nitrogen and chlorine is in the form of HNO 3 and CIONO 2 , respectively. An anomalous N 2 O-NO y correlation observed in March 1997 appears to be caused to a large extent by quasi-horizontal mixing of air masses across the vortex edge. However, near 20 km some denitrification of ∼1.5 to 2 ppbv NO y could be observed. The N 2 O profile measured in July 1997 indicates remnants of polar vortex air and is not reproduced by the CTM at the same location. However, the profile shapes of the individual compounds of the NO y family as well as the NO x /NO y ratio are reproduced fairly well by the model.


Journal of Geophysical Research | 1999

Streamers observed by the CRISTA experiment and simulated in the KASIMA model

W. Kouker; D. Offermann; V. Küll; T. Reddmann; R. Ruhnke; A. Franzen

Data from the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) showed three narrow streamers of air with tropical mixing ratios of HNO3 and N2O pointing from the tropics toward middle latitudes in the middle stratosphere on November 6, 1994. By means of the mechanistic prognostic model, the diagnostic chemical transport model (CTM) and the combined nudged model, which are all versions of the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the hypothesis is checked of whether these streamers are due to adiabatic transport processes on a timescale of days. Whereas the prognostic model reproduces the northern hemisphere streamers only qualitatively in their position, the CTM and the nudged model show a good agreement between their simulated tracer structures and the observed streamers. Because of the clear streamer signal in the nudged model compared to the CTM, its data are used for the investigation of isentropic tracer deformations. They show that the northern hemisphere streamers are mainly built by adiabatic transport on a timescale of days. Rossby wave breaking plays a role in the dissolution of the streamers. In the southern hemisphere, the production of Ertels potential vorticity (EPV) and the net heating rate is large, and the observed streamers are therefore not reproduced in the EPV. Moreover, the isentropic deformations of the EPV due to the horizontal flow are that strong during a minor warming in the end of October that the reproduction of the southern hemisphere streamer by means of artificial tracers fails.


Journal of Geophysical Research | 1999

The influence of the OH + NO2+ M reaction on the NOy, partitioning in the late Arctic winter 1992/1993 as studied with KASIMA

R. Ruhnke; W. Kouker; T. Reddmann

The northern hemispheric winter 1992/1993 is simulated with the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA). The model is a combination of an off-line model using analyses from the European Centre for Medium Range Weather Forecasts up to a pressure altitude of 10 hPa and a mechanistic prognostic model on top with an entire altitude range from 10 up to 120 km. The chemistry scheme included in the model represents the gas phase chemistry as well as heterogeneous reactions on polar stratospheric clouds and on liquid sulfate aerosols. We compare model results with global measurements performed by the instruments of the Upper Atmosphere Research Satellite. The model is able to simulate the global distribution of source gases and long-lived species as well as reactive species in good agreement with the observations. The most significant discrepancies occur inside the vortex where the calculated ozone mixing ratio is overestimated. Below the pressure altitude of 30 hPa inside the vortex the calculated NO2 mixing ratio is underestimated compared to the measurement. A sensitivity study with a new recommendation of the OH + NO2 + M rate constant using the full form of the falloff function for the pressure dependence has been performed. The mixing ratios of the NOy species differ by only about 5% due to the new recommended rate constant inside the vortex with no significant effect on the denoxification.


Journal of Atmospheric Chemistry | 2003

Intercomparison of Stratospheric Chemistry Models under Polar Vortex Conditions

Martina Krämer; R. I. Müller; Heinrich Bovensmann; J. P. Burrows; J. Brinkmann; E. P. Röth; J.-U. Grooß; R. O. Müller; T. H. Woyke; R. Ruhnke; G. Günther; J. Hendricks; E. Lippert; Kenneth S. Carslaw; T. Peter; A. Zieger; C. Brühl; Benedikt Steil; R. Lehmann; Daniel S. McKenna

Several stratospheric chemistry modules from box, 2-D or 3-D models, have been intercompared. The intercomparison was focused on the ozone loss and associated reactive species under the conditions found in the cold, wintertime Arctic and Antarctic vortices. Comparisons of both gas phase and heterogeneous chemistry modules show excellent agreement between the models under constrained conditions for photolysis and the microphysics of polar stratospheric clouds. While the mean integral ozone loss ranges from 4–80% for different 30–50 days long air parcel trajectories, the mean scatter of model results around these values is only about ±1.5%. In a case study, where the models employed their standard photolysis and microphysical schemes, the variation around the mean percentage ozone loss increases to about ±7%. This increased scatter of model results is mainly due to the different treatment of the PSC microphysics and heterogeneous chemistry in the models, whereby the most unrealistic assumptions about PSC processes consequently lead to the least representative ozone chemistry. Furthermore, for this case study the model results for the ozone mixing ratios at different altitudes were compared with a measured ozone profile to investigate the extent to which models reproduce the stratospheric ozone losses. It was found that mainly in the height range of strong ozone depletion all models underestimate the ozone loss by about a factor of two. This finding corroborates earlier studies and implies a general deficiency in our understanding of the stratospheric ozone loss chemistry rather than a specific problem related to a particular model simulation.


Geophysical Research Letters | 2014

Impact of acetone (photo)oxidation on HOx production in the UT/LMS based on CARIBIC passenger aircraft observations and EMAC simulations

Marco Neumaier; R. Ruhnke; Oliver Kirner; H. Ziereis; Greta Stratmann; Carl A. M. Brenninkmeijer; A. Zahn

Until a decade ago, acetone was assumed to be a dominant HOx source in the dry extra-tropical upper troposphere (ex-UT). New photodissociation quantum yields of acetone and the lack of representative data from the ex-UT challenged that assumption. Regular mass spectrometric observations onboard the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) passenger aircraft deliver the first representative distribution of acetone in the UT/LMS (UT/lowermost stratosphere). Based on diverse CARIBIC trace gas data and non-observed parameters taken from the model ECHAM5/MESSy for Atmospheric Chemistry, we quantify the HOx source in the UT/LMS from (photo)oxidation of acetone. The findings are contrasted to HOx production from ozone photolysis, overall the dominant tropospheric HOx source. It is shown that HOx production from acetone (photo)oxidation reaches up to 95% of the HOx source from ozone photolysis in autumn in the UT and on average ~61% in summer. That is, acetone is a significant source of HOx in the UT/LMS.


Geophysical Research Letters | 1999

The vertical distribution of ClO at Ny‐Ålesund during March 1997

R. Ruhnke; W. Kouker; Th. Reddmann; Hermann Berg; Gerd Hochschild; G. Kopp; R. Krupa; M. Kuntz

Results of the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) are compared with vertical ClO profiles measured by the groundbased Millimeter Wave Radiometer MIRA2 inside the vortex during March 1997 at Ny-Alesund. The influence of the OH + ClO and HO 2 + ClO reaction branching ratio and of the absorption cross section of Cl 2 O 2 on the calculated mixing ratios of ClO and ozone has been investigated. In the upper stratosphere the ClO mixing ratio is reduced by 90% by using a minor channel of the OH + ClO reaction with a branching ratio of 0.07. A temperature dependent minor channel of the HO 2 + ClO reaction reduces the upper stratospheric ClO mixing ratio by 22%. Different absorption spectra of Cl 2 O 2 alter the ClO mixing ratios up to 12% at noon at 20 km. This causes differences of 15% in the ozone loss during winter.


Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment, and Space | 1998

Intercomparison of ILAS/ADEOS with MIPAS-B measurements in late March 1997

H. Oelhaf; Herbert Fischer; G. Wetzel; Markus Stowasser; F. Friedl-Vallon; G. Maucher; Olaf Trieschmann; R. Ruhnke; Yasuhiro Sasano

Embedded in the ILAS validation campaign a balloon flight was carried out with the limb emission sounder MIPAS-B in the early night of March 24, 1997. MIPAS-B is capable is capable of simultaneously measuring profiles of all molecules ILAS was covering. Key reservoir molecules like ClONO2 and N2O25 which are not or hard to measure with ILAS complement the ILAS set of target species and allow the partitioning and budge to NOy to be studied. The balloon was launched from Kiruna/Sweden. The distance of the mean location of tangent points between the satellite and the balloonborne observation was less than 150 km and the time was offset by less then 4 hours for the most adjacent overpass of ADEOS. The balloon observations covered the altitude range of 11.0 to 29.5 km. Vertical profiles of N2O, CH4, H2O, HNO3 NO2 and aerosol extinction obtained with MIPAS-B have been compared to those obtained with ILAS based on the three most adjacent ADEOS overpasses. Model calculations with the 3D chemical transport model KASIMA were used to account for nay deviations in the dynamical and chemical properties of the airmasses observed at the different times and locations of observation. The paper demonstrates the progress made in the consistency of the data sets when going from Version 3.0 to Version 3.1 of the ILAS data processing software. Excellent agreement between balloon and satellite observation has been found for HNO3 on the basis of the Version 3.1 results. The same holds for NO2 above 20 km provided the diurnal variation is taken into account. Discrepancies still exist with the Version 3.1 results in the lowermost part of the stratospheric for most gases and generally in the case of N2O.

Collaboration


Dive into the R. Ruhnke's collaboration.

Top Co-Authors

Avatar

W. Kouker

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

H. Oelhaf

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

H. Fischer

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

F. Friedl-Vallon

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Höpfner

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

T. Reddmann

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

G. Maucher

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

G. Wetzel

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anne Kleinert

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Oliver Kirner

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge