Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. S. Terry is active.

Publication


Featured researches published by R. S. Terry.


Proceedings of the Royal Society of London B: Biological Sciences (1934-1990) | 2004

Widespread vertical transmission and associated host sex ratio distortion within the eukaryotic phylum Microspora

R. S. Terry; Judith E. Smith; R. G. Sharpe; Thierry Rigaud; D. T. J. Littlewood; Joseph E. Ironside; David Rollinson; Didier Bouchon; Calum MacNeil; J.T.A. Dick; Alison M. Dunn

Vertical transmission (VT) and associated manipulation of host reproduction are widely reported among prokaryotic endosymbionts. Here, we present evidence for widespread use of VT and associated sex–ratio distortion in a eukaryotic phylum. The Microspora are an unusual and diverse group of eukaryotic parasites that infect all animal phyla. Following our initial description of a microsporidian that feminizes its crustacean host, we survey the diversity and distribution of VT within the Microspora. We find that vertically transmitted microsporidia are ubiquitous in the amphipod hosts sampled and that they are also diverse, with 11 species of microsporidia detected within 16 host species. We found that infections were more common in females than males, suggesting that host sex–ratio distortion occurs in five out of eight parasite species tested. Phylogenetic reconstruction demonstrates that VT occurs in all major lineages of the phylum Microspora and that sex–ratio distorters are found on multiple branches of the phylogenetic tree. We propose that VT is either an ancestral trait or evolves with peculiar frequency in this phylum. If the association observed here between VT and host sex–ratio distortion holds true across other host taxa, these eukaryotic parasites may join the bacterial endosymbionts in their importance as sex–ratio distorters.


International Journal for Parasitology | 2001

High levels of congenital transmission of Toxoplasma gondii in a commercial sheep flock.

P. Duncanson; R. S. Terry; Judith E. Smith; Geoff Hide

Our current understanding of congenital transmission of Toxoplasma gondii from ewe to lamb dictates that infection frequently results in abortion and the death of the developing foetus, that the birth of live infected lambs occurs rarely and that the cat is the predominant source of infection in ewes. Using direct polymerase chain reaction detection of T. gondii, we report high levels of congenital transmission occurring in a commercially managed sheep flock. We sampled foetal-derived placental tissue and tissues from aborted lambs and showed that congenital transmission was detected in these tissues from 61% of all pregnancies. Where pregnancies resulted in the death of one or more lambs, T. gondii was detected in the lamb tissue for all but one of 18 (94%) pregnancies. Of the successful pregnancies resulting in the birth of live lambs we were able to detect T. gondii in foetal-derived placental tissue from 37 of 70 (42%) pregnancies. These results show that congenital transmission is occurring in a high percentage of lambings including normal healthy lambings, at this farm, suggesting that this route of transmission from generation to generation may be much more significant than that reported previously. These results may have implications for sheep husbandry and future epidemiological studies of T. gondii.


Advances in Parasitology | 2001

Transovarial transmission in the microsporidia.

Alison M. Dunn; R. S. Terry; Judith E. Smith

The microsporidia are an ancient and diverse group of protists which have many unusual characteristics. These include prokaryotic-like 70s ribosomes, enclosed nuclear division, a lack of mitochondria and complex life cycles which frequently involve vertical transmission. This use of vertical transmission is unparalleled by other protists and is seen only among bacterial endosymbionts and sex ratio distorters and in host cell organelles. Transovarially transmitted microsporidia can have unusual and profound effects on host population sex ratios. We here consider the mechanisms of transovarial transmission and its implications for parasite evolution. We review parasite/host relationships and the evolution of virulence under transovarial transmission and consider the implications of these parasites for host ecology and evolution.


Proceedings of the Royal Society of London Series B-Biological SciencesProceedings of the Royal Society of London Series B-Biological Sciences | 2003

Parasite-mediated predation between native and invasive amphipods

Calum MacNeil; Jaimie T. A. Dick; Melanie J. Hatcher; R. S. Terry; Judith E. Smith; Alison M. Dunn

Parasites can structure biological communities directly through population regulation and indirectly by processes such as apparent competition. However, the role of parasites in the process of biological invasion is less well understood and mechanisms of parasite mediation of predation among hosts are unclear. Mutual predation between native and invading species is an important factor in determining the outcome of invasions in freshwater amphipod communities. Here, we show that parasites mediate mutual intraguild predation among native and invading species and may thereby facilitate the invasion process. We find that the native amphipod Gammarus duebeni celticus is host to a microsporidian parasite, Pleistophora sp. (new species), with a frequency of infection of 0–90%. However, the parasite does not infect three invading species, G. tigrinus, G. pulex and Crangonyx pseudogracilis. In field and laboratory manipulations, we show that the parasite exhibits cryptic virulence: the parasite does not affect host fitness in single–species populations, but virulence becomes apparent when the native and invading species interact. That is, infection has no direct effect on G. d. celticus survivorship, size or fecundity; however, in mixed–species experiments, parasitized natives show a reduced capacity to prey on the smaller invading species and are more likely to be preyed upon by the largest invading species. Thus, by altering dominance relationships and hierarchies of mutual predation, parasitism strongly influences, and has the potential to change, the outcome of biological invasions.


Parasitology | 2005

High levels of congenital transmission of Toxoplasma gondii in longitudinal and cross-sectional studies on sheep farms provides evidence of vertical transmission in ovine hosts.

R. H. Williams; E. K. Morley; J. M. Hughes; P. Duncanson; R. S. Terry; Judith E. Smith; Geoff Hide

Recent research suggests that vertical transmission may play an important role in sustaining Toxoplasma gondii infection in some species. We report here that congenital transmission occurs at consistently high levels in pedigree Charollais and outbred sheep flocks sampled over a 3-year period. Overall rates of transmission per pregnancy determined by PCR based diagnosis, were consistent over time in a commercial sheep flock (69%) and in sympatric (60%) and allopatric (41%) populations of Charollais sheep. The result of this was that 53.7 % of lambs were acquiring an infection prior to birth: 46.4% of live lambs and 90.0% of dead lambs (in agreement with the association made between T. gondii and abortion). No significant differences were observed between lamb sexes. Although we cannot distinguish between congenital transmission occurring due to primary infection at pregnancy or reactivation of chronic infection during pregnancy, our observations of consistently high levels of congenital transmission over successive lambings favour the latter.


Parasitology | 2006

The prevalence of Neospora caninum and co-infection with Toxoplasma gondii by PCR analysis in naturally occurring mammal populations

J. M. Hughes; R. H. Williams; E. K. Morley; D. A. N. Cook; R. S. Terry; R. G. Murphy; Judith E. Smith; Geoff Hide

Neospora caninum and Toxoplasma gondii are closely related intracellular protozoan parasites associated with bovine and ovine abortion respectively. Little is known about the extent of Neospora/Toxoplasma co-infection in naturally infected populations of animals. Using nested PCR techniques, based on primers from the Nc5 region of N. caninum and SAG1 for T. gondii, the prevalence of N. caninum and its co-infection with T. gondii were investigated in populations of Mus domesticus, Rattus norvegicus and aborted lambs (Ovis aries). A low frequency of infection with N. caninum was detected in the Mus domesticus (3%) and Rattus norvegicus (4.4%) populations. A relatively high frequency of infection with N. caninum was detected in the brains of aborted lambs (18.9%). There was no significant relationship between N. caninum and T. gondii co-infection. Investigation of the tissue distribution of Neospora, in aborted lambs, showed that Neospora could not be detected in tissues other than brain and this was in contrast to Toxoplasma where the parasite could be frequently detected in a range of tissues.


Journal of Eukaryotic Microbiology | 1999

Ultrastructural Characterisation and Molecular Taxonomic Identification of Nosema granulosis n. sp., a Transovarially Transmitted Feminising (TTF) Microsporidium

R. S. Terry; Judith E. Smith; Didier Bouchon; Thierry Rigaud; Phil Duncanson; Rose G. Sharpe; Alison M. Dunn

A novel microsporidian parasite is described, which infects the crustacean host Gammarus duebeni. The parasite was transovarially transmitted and feminised host offspring. The life cycle was monomorphic with three stages. Meronts were found in host embryos, juveniles, and in the gonadal tissue of adults. Sporoblasts and spores were restricted to the gonad. Sporogony was disporoblastic giving rise to paired sporoblasts, which then differentiated to form spores. Spores were not found in regular groupings and there was no interfacial envelope. Spores were approximately 3.78 × 1.22 μm and had a thin exospore wall, a short polar filament, and an unusual granular polaroplast. All life cycle stages were diplokaryotic. A region from the parasite small subunit ribosomal RNA gene was amplified and sequenced. Phylogenetic analysis based on these data places the parasite within the genus Nosema. We have named the species Nosema granulosis based on the structure of the polaroplast.


Journal of Eukaryotic Microbiology | 1998

Impact of a novel, feminising microsporidium on its crustacean host

R. S. Terry; Judith E. Smith; Alison M. Dunn

We describe the transmission and pathogenic effects of a novel, feminising microsporidium, probably a Nasema species, on its crustacean host Gammarus duebeni. The parasite prevalence in the field was high (46% of females were infected) and the parasite was transovarially transmitted to 91% of embryos of infected females. The impact of the parasite on the host was assessed by means of a host breeding experiment. The parasite feminised 66% of infected host young and was transovarially transmitted by these individuals to the next host generation. The parasite differed from other feminising microsporidia in G. duebeni in that early embryos had a high parasite burden (288 parasites per embryo) and the infection was pathogenic, causing a reduction in both the growth rate of young hosts and in adult size. This study suggests that feminising microsporidia are a diverse group in which a variety of host/pathogen relationships have evolved.


Parasitology | 2005

Significant familial differences in the frequency of abortion and Toxoplasma gondii infection within a flock of Charollais sheep.

E. K. Morley; R. H. Williams; J. M. Hughes; R. S. Terry; P. Duncanson; Judith E. Smith; Geoff Hide

A study was carried out to investigate the frequencies of abortion and congenital Toxoplasma gondii infection within 27 families (765 individuals) of a pedigree Charollais sheep flock maintained on a working farm in Worcestershire, UK, since 1992. Pedigree lambing records were analysed to establish the frequency of abortion for each family. The frequency of congenital infection was determined for each family by PCR analysis of tissue samples taken from newborn lambs. A total of 155 lambs were tested for congenital T. gondii infection, which were all born during the study period 2000-2003. Significant differences in the frequency of abortion between sheep families within this flock were observed with frequencies ranging between 0% and 48% (P < 0.01). Significantly different infection frequencies with T. gondii were also observed for different families and ranged between 0% and 100% (P<0.01). Although the actual cause of each abortion was not verified, a highly significant positive correlation was found to exist between the frequency of abortion and the frequency of T. gondii infection in the same families (P<0.01). The data presented here raise further questions regarding the significance of congenital transmission of T. gondii within sheep populations, the possible successive vertical transmission of T. gondii within families of sheep, and the potential role of inherited genetic susceptibility to abortion with respect to T. gondii infection. This work invites further study into the epidemiology of ovine toxoplasmosis and may have implications for sheep husbandry methods in the future.


Parasitology | 1995

Evolutionary ecology of vertically transmitted parasites: transovarial transmission of a microsporidian sex ratio distorter in Gammarus duebeni

Alison M. Dunn; Melanie J. Hatcher; R. S. Terry; Chris M. N. Tofts

Vertically transmitted parasites are transmitted from generation to generation of hosts usually via the hosts gametes. Owing to gamete size dimorphism, the major transmission route is transovarial and selection (on the parasite) favours strategies which increase the relative frequency of the transmitting (female) host sex. These strategies impose unusual selection pressures on the host, and coevolution between hosts and vertically transmitted parasites has been implicated in speciation, in the evolution of symbiosis, and in the evolution of novel systems of host reproduction and sex determination. We review the evolutionary implications of vertically transmitted parasites in arthropods before focusing on strategies of transmission of a parasitic sex ratio distorter in Gammarus duebeni . The efficiency of parasite transmission to new hosts is a key factor underlying the relationship between vertically transmitted parasites and their hosts. Vertically transmitted parasites must overcome 2 bottlenecks in order to ensure successful infection of future host generations: first, transmission from adult to gamete; and secondly, transmission to the germ-line of the infected host. We investigate these 2 processes with regard to transovarial transmission by a microsporidian parasite in Gammarus duebeni . Parasite transmission from adult to eggs is highly efficient, with 96% of eggs of infected mothers inheriting the infection, whereas transmission to germ-line within infected embryos is relatively inefficient (72%). We measure parasite distribution between cells of developing embryos, and use these distributions to infer possible mechanisms of parasite transmission to germ-line. Parasite distribution within the embryo is dependent on host cell lineage, and is not consistent with unbiased segregation between daughter cells. These results indicate that parasites segregate together at host cell division, and may reflect a strategy of differential segregation to the host germ-line. We consider alternative parasite strategies at the cell-level in terms of their evolutionary implications.

Collaboration


Dive into the R. S. Terry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calum MacNeil

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge