R. Samadi
Pierre-and-Marie-Curie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Samadi.
Astronomy and Astrophysics | 2012
B. Mosser; M. J. Goupil; K. Belkacem; J. P. Marques; P. G. Beck; S. Bloemen; J. De Ridder; C. Barban; S. Deheuvels; Y. Elsworth; S. Hekker; T. Kallinger; R. M. Ouazzani; Marc H. Pinsonneault; R. Samadi; D. Stello; R. A. García; Todd C. Klaus; Jie Li; S. Mathur; Robert L. Morris
Context. The space mission Kepler provides us with long and uninterrupted photometric time series of red giants. We are now able to probe the rotational behaviour in their deep interiors using the observations of mixed modes. Aims. We aim to measure the rotational splittings in red giants and to derive scaling relations for rotation related to seismic and fundamental stellar parameters. Methods. We have developed a dedicated method for automated measurements of the rotational splittings in a large number of red giants. Ensemble asteroseismology, namely the examination of a large number of red giants at different stages of their evolution, allows us to derive global information on stellar evolution. Results. We have measured rotational splittings in a sample of about 300 red giants. We have also shown that these splittings are dominated by the core rotation. Under the assumption that a linear analysis can provide the rotational splitting, we observe a small increase of the core rotation of stars ascending the red giant branch. Alternatively, an important slow down is observed for red-clump stars compared to the red giant branch. We also show that, at fixed stellar radius, the specific angular momentum increases with increasing stellar mass. Conclusions. Ensemble asteroseismology indicates what has been indirectly suspected for a while: our interpretation of the observed rotational splittings leads to the conclusion that the mean core rotation significantly slows down during the red giant phase. The slow-down occurs in the last stages of the red giant branch. This spinning down explains, for instance, the long rotation periods measured in white dwarfs.
Nature | 2009
Joris De Ridder; C. Barban; Frederic Baudin; Fabien Carrier; Artie P. Hatzes; S. Hekker; Thomas Kallinger; Werner W. Weiss; A. Baglin; Michel Auvergne; R. Samadi; Pierre Barge; Magali Deleuil
Towards the end of their lives, stars like the Sun greatly expand to become red giant stars. Such evolved stars could provide stringent tests of stellar theory, as many uncertainties of the internal stellar structure accumulate with age. Important examples are convective overshooting and rotational mixing during the central hydrogen-burning phase, which determine the mass of the helium core, but which are not well understood. In principle, analysis of radial and non-radial stellar oscillations can be used to constrain the mass of the helium core. Although all giants are expected to oscillate, it has hitherto been unclear whether non-radial modes are observable at all in red giants, or whether the oscillation modes have a short or a long mode lifetime, which determines the observational precision of the frequencies. Here we report the presence of radial and non-radial oscillations in more than 300 giant stars. For at least some of the giants, the mode lifetimes are of the order of a month. We observe giant stars with equally spaced frequency peaks in the Fourier spectrum of the time series, as well as giants for which the spectrum seems to be more complex. No satisfactory theoretical explanation currently exists for our observations.
Science | 2008
Eric Michel; A. Baglin; Michel Auvergne; C. Catala; R. Samadi; F. Baudin; T. Appourchaux; C. Barban; W. W. Weiss; G. Berthomieu; Patrick Boumier; Marc-Antoine Dupret; R. A. García; M. Fridlund; R. Garrido; M. J. Goupil; Hans Kjeldsen; Y. Lebreton; Benoit Mosser; A. Grotsch-Noels; E. Janot-Pacheco; J. Provost; Ian W. Roxburgh; Anne Thoul; Thierry Toutain; Didier Tiphène; Sylvaine Turck-Chieze; Sylvie Vauclair; G. Vauclair; Conny Aerts
Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.
Astronomy and Astrophysics | 2008
T. Appourchaux; E. Michel; Michel Auvergne; A. Baglin; Thierry Toutain; F. Baudin; O. Benomar; W. J. Chaplin; S. Deheuvels; R. Samadi; G. A. Verner; P. Boumier; R. A. García; Benoit Mosser; J. C. Hulot; J. Ballot; C. Barban; Y. Elsworth; Sebastian J. Jimenez-Reyes; Hans Kjeldsen; C. Régulo; Ian W. Roxburgh
Context. The first asteroseismology results from CoRoT are presented, on a star showing Sun-like oscillations. We have analyzed a 60 day lightcurve of high-quality photometric data collected by CoRoT on the F5 V star HD 49933. The data reveal a rich spectrum of overtones of low-degree p modes. Aims. Our aim was to extract robust estimates of the key parameters of the p modes observed in the power spectrum of the lightcurve. Methods. Estimation of the mode parameters was performed using maximum likelihood estimation of the power spectrum. A global fitting strategy was adopted whereby 15 mode orders of the mode spectrum (45 modes) were fitted simultaneously. Results. The parameter estimates that we list include mode frequencies, peak linewidths, mode amplitudes, and a mean rotational frequency splitting. We find that the average large frequency (overtone) spacing derived from the fitted mode frequencies is 85.9 ± 0.15 μHz. The frequency of maximum amplitude of the radial modes is at 1760 μHz, where the observed rms mode amplitude is 3.75 ± 0.23 ppm. The mean rotational splitting of the non-radial modes appears to be in the range ≈2.7 μHz to ≈3.4 μHz. The angle of inclination offered by the star, as determined by fits to the amplitude ratios of the modes, appears to be in the range ≈50 degrees to ≈62 degrees.
Astronomy and Astrophysics | 2010
Benoit Mosser; K. Belkacem; Marie Jo Goupil; A. Miglio; Thierry Morel; C. Barban; F. Baudin; S. Hekker; R. Samadi; Joris De Ridder; W. W. Weiss; Michel Auvergne; A. Baglin
Context. The CoRoT 5-month long observation runs provide us with the opportunity to analyze a large variety of red-giant stars and derive their fundamental parameters from their asteroseismic properties. Aims. We perform an analysis of more than 4600 CoRoT light curves to extract as much information as possible. We take into account the characteristics of both the star sample and the method to ensure that our asteroseismic results are as unbiased as possible. We also study and compare the properties of red giants in two opposite regions of the Galaxy. Methods. We analyze the time series using the envelope autocorrelation function to extract precise asteroseismic parameters with reliable error bars. We examine first the mean wide frequency separation of solar-like oscillations and the frequency of the maximum seismic amplitude, then the parameters of the excess power envelope. With the additional information of the effective temperature, we derive the stellar mass and radius. Results. We identify more than 1800 red giants among the 4600 light curves and obtain accurate distributions of the stellar parameters for about 930 targets. We are able to reliably measure the mass and radius of several hundred red giants. We derive precise information about the stellar population distribution and the red clump. By comparing the stars observed in two different fields, we find that the stellar asteroseismic properties are globally similar, but that the characteristics are different for red-clump stars. Conclusions. This study demonstrates the efficiency of statistical asteroseismology: validating scaling relations allows us to infer fundamental stellar parameters, derive precise information about red-giant evolution and interior structure, analyze and compare stellar populations from different fields.
Astronomy and Astrophysics | 2011
K. Belkacem; M. J. Goupil; Marc-Antoine Dupret; R. Samadi; F. Baudin; Arlette Noels-Grötsch; B. Mosser
Asteroseismology of stars that exhibit solar-like oscillations are enjoying a growing interest with the wealth of observational results obtained with the CoRoT and Kepler missions. In this framework, scaling laws between asteroseismic quantities and stellar parameters are becoming essential tools to study a rich variety of stars. However, the physical underlying mechanisms of those scaling laws are still poorly known. Our objective is to provide a theoretical basis for the scaling between the frequency of the maximum in the power spectrum (νmax) of solar-like oscillations and the cut-off frequency (νc). Using the SoHO GOLF observations together with theoretical considerations, we first confirm that the maximum of the height in oscillation power spectrum is determined by the so-called plateau of the damping rates. The physical origin of the plateau can be traced to the destabilizing effect of the Lagrangian perturbation of entropy in the upper-most layers, which becomes important when the modal period and the local thermal relaxation time-scale are comparable. Based on this analysis, we then find a linear relation between νmax and νc, with a coefficient that depends on the ratio of the Mach number of the exciting turbulence to the third power to the mixing-length parameter.
Astronomy and Astrophysics | 2012
B. Mosser; M. J. Goupil; K. Belkacem; E. Michel; D. Stello; J. P. Marques; Y. Elsworth; C. Barban; P. G. Beck; Timothy R. Bedding; J. De Ridder; R. A. García; S. Hekker; T. Kallinger; R. Samadi; Martin C. Stumpe; Christopher J. Burke
Context. There are now more than 22 months of long-cadence data available for thousands of red giants observed with the Kepler space mission. Consequently, we are able to clearly resolve fine details in their oscillation spectra and see many components of the mixed modes that probe the stellar core. Aims. We report for the first time a parametric fit to the pattern of the � = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes, we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. Methods. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. Results. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of � = 3 modes, of � = 2 mixed modes, for the mode widths and amplitudes, and for the � = 1 rotational splittings. Conclusions. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.
Astronomy and Astrophysics | 2011
B. Mosser; C. Barban; J. Montalbán; P. G. Beck; A. Miglio; K. Belkacem; M. J. Goupil; S. Hekker; J. De Ridder; Dupret; Y. Elsworth; A. Noels; F. Baudin; A.E. Michel; R. Samadi; Michel Auvergne; A. Baglin; C. Catala
Context. The CoRoT mission has provided thousands of red-giant light curves. The analysis of their solar-like oscillations allows us to characterize their stellar properties. Aims. Up to now, the global seismic parameters of the pressure modes have been unable to distinguish red-clump giants from members of the red-giant branch. As recently done with Kepler red giants, we intend to analyze and use the so-called mixed modes to determine the evolutionary status of the red giants observed with CoRoT. We also aim at deriving different seismic characteristics depending on evolution. Methods. The complete identification of the pressure eigenmodes provided by the red-giant universal oscillation pattern allows us to aim at the mixed modes surrounding the l = 1 expected eigenfrequencies. A dedicated method based on the envelope autocorrelation function is proposed to analyze their period separation. Results. We have identified the mixed-mode signature separation thanks to their pattern that is compatible with the asymptotic law of gravity modes. We have shown that, independent of any modeling, the g-mode spacings help to distinguish the evolutionary status of a red-giant star. We then report the different seismic and fundamental properties of the stars, depending on their evolutionary status. In particular, we show that high-mass stars of the secondary clump present very specific seismic properties. We emphasize that stars belonging to the clump were affected by significant mass loss. We also note significant population and/or evolution differences in the different fields observed by CoRoT.
Astronomy and Astrophysics | 2012
B. Mosser; Y. Elsworth; S. Hekker; D. Huber; T. Kallinger; S. Mathur; K. Belkacem; M. J. Goupil; R. Samadi; C. Barban; Timothy R. Bedding; W. J. Chaplin; R. A. García; D. Stello; J. De Ridder; Christopher K. Middour; Robert L. Morris; Elisa V. Quintana
Context. The space mission Kepler provides us with long and uninterrupted photometric time series of red giants. This allows us to examine their seismic global properties and to compare these with theoretical predictions. Aims. We aim to describe the oscillation power excess observed in red giant oscillation spectra with global seismic parameters, and to investigate empirical scaling relations governing these parameters. From these scalings relations, we derive new physical properties of red giant oscillations. Methods. Various different methods were compared in order to validate the processes and to derive reliable output values. For consistency, a single method was then used to determine scaling relations for the relevant global asteroseismic parameters: mean mode height, mean height of the background signal superimposed on the oscillation power excess, width of the power excess, bolometric amplitude of the radial modes and visibility of non-radial modes. A method for deriving oscillation amplitudes is proposed, which relies on the complete identification of the red giant oscillation spectrum. Results. The comparison of the different methods has shown the important role of the way the background is modelled. The convergence reached by the collaborative work enables us to derive significant results concerning the oscillation power excess. We obtain several scaling relations, and identify the influence of the stellar mass and the evolutionary status. The effect of helium burning on the red giant interior structure is confirmed: it yields a strong mass-radius relation for clump stars. We find that none of the amplitude scaling relations motivated by physical considerations predict the observed mode amplitudes of red giant stars. In parallel, the degree-dependent mode visibility exhibits important variations. Both effects seem related to the significant influence of the high mode mass of non-radial mixed modes. A family of red giants with very weak dipole modes is identified, and its properties are analyzed. Conclusions. The clear correlation between the power densities of the background signal and of the stellar oscillation induces important consequences to be considered for deriving a reliable theoretical relation of the mode amplitude. As a by-product of this work, we have verified that red giant asteroseismology delivers new insights for stellar and Galactic physics, given the evidence for mass loss at the tip of the red giant branch.
Astronomy and Astrophysics | 2011
B. Mosser; K. Belkacem; M. J. Goupil; E. Michel; Y. Elsworth; C. Barban; T. Kallinger; S. Hekker; J. De Ridder; R. Samadi; F. Baudin; F. J. G. Pinheiro; Michel Auvergne; A. Baglin; C. Catala
The CoRoT and Kepler satellites have provided thousands of red-giant oscillation spectra. The analysis of these spectra requires efficient methods for identifying all eigenmode parameters. The assumption of new scaling laws allows us to construct a theoretical oscillation pattern. We then obtain a highly precise determination of the large separation by correlating the observed patterns with this reference. We demonstrate that this pattern is universal and are able to unambiguously assign the eigenmode radial orders and angular degrees. This solves one of the current outstanding problems of asteroseismology hence allowing precise theoretical investigation of red-giant interiors.