Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Scott Dunn is active.

Publication


Featured researches published by R. Scott Dunn.


Journal of Magnetic Resonance Imaging | 1999

NMR Relaxation Times in the Human Brain at 3.0 Tesla

Janaka P. Wansapura; Scott K. Holland; R. Scott Dunn; William S. Ball

Relaxation time measurements at 3.0 T are reported for both gray and white matter in normal human brain. Measurements were made using a 3.0 T Bruker Biospec magnetic resonance imaging (MRI) scanner in normal adults with no clinical evidence of neurological disease. Nineteen subjects, 8 female and 11 male, were studied for T1 and T2 measurements, and 7 males were studied for T*2. Measurements were made using a saturation recovery method for T1, a multiple spin‐echo experiment for T2, and a fast low‐angle shot (FLASH) sequence with 14 different echo times for T*2. Results of the measurements are summarized as follows. Average T1 values measured for gray matter and white matter were 1331 and 832 msec, respectively. Average T2 values measured for gray matter and white matter were 80 and 110 msec, respectively. The average T*2 values for occipital and frontal gray matter were 41.6 and 51.8 msec, respectively. Average T*2 values for occipital and frontal white matter were 48.4 and 44.7 msec, respectively. ANOVA tests of the measurements revealed that for both gray and white matter there were no significant differences in T1 from one location in the brain to another. T2 in occipital gray matter was significantly higher (0.0001 < P < .0375) than the rest of the gray matter, while T2 in frontal white matter was significantly lower (P < 0.0001). Statistical analysis of cerebral hemispheric differences in relaxation time measurements showed no significant differences in T1 values from the left hemisphere compared with the right, except in insular gray matter, where this difference was significant at P = 0.0320. No significant difference in T2 values existed between the left and right cerebral hemispheres. Significant differences were apparent between male and female relaxation time measurements in brain. J. Magn. Reson. Imaging 1999;9:531–538.


Journal of Cerebral Blood Flow and Metabolism | 2011

Ex Vivo Diffusion Tensor Imaging and Neuropathological Correlation in a Murine Model of Hypoxia–Ischemia-Induced Thrombotic Stroke

Ahmed Shereen; Niza Nemkul; Dianer Yang; Faisal Adhami; R. Scott Dunn; Missy Hazen; Masato Nakafuku; Gang Ning; Diana M. Lindquist; Chia-Yi Kuan

Diffusion tensor imaging (DTI) is a powerful method to visualize white matter, but its use in patients with acute stroke remains limited because of the lack of corresponding histologic information. In this study, we addressed this issue using a hypoxia–ischemia (HI)-induced thrombotic model of stroke in adult mice. At 6, 15, and 24 hours after injury, animals were divided into three groups for (1) in vivo T2- and diffusion-weighted magnetic resonance imaging, followed by histochemistry, (2) ex vivo DTI and electron microscopy, and (3) additional biochemical or immunochemical assays. The temporal changes of diffusion anisotropy and histopathology were compared in the fimbria, internal capsule, and external capsule. We found that HI caused a rapid reduction of axial and radial diffusivities in all three axonal bundles. A large decrease in fractional anisotropy, but not in axial diffusivity per se, was associated with structural breakdown of axons. Furthermore, the decrease in radial diffusivity correlated with swelling of myelin sheaths and compression of the axoplasma. The gray matter of the hippocampus also exhibited a high level of diffusion anisotropy, and its reduction signified dendritic degeneration. Taken together, these results suggest that cross-evaluation of multiple DTI parameters may provide a fuller picture of axonal and dendritic injury in acute ischemic stroke.


Journal of Cerebral Blood Flow and Metabolism | 2000

Hypoglycemic brain injury: potentiation from respiratory depression and injury aggravation from hyperglycemic treatment overshoots.

Gabrielle M. de Courten-Myers; Guohua Xi; Jong Hee Hwang; R. Scott Dunn; Ashley S. Mills; Scott K. Holland; Kenneth R. Wagner; Ronald E. Myers

Hypoglycemia can cause brain dysfunction, brain injury, and death. The present study seeks to broaden current information regarding mechanisms of hypoglycemic brain injury by investigating a novel etiology. The cats high resistance to brain injury from hypoglycemia suggested that additional influences such as respiratory depression might play a facilitating role. Three groups of cats were exposed to fasting and insulin-induced hypoglycemia (HG; n = 6), euglycemic respiratory depression (RD; n = 5), and combined hypoglycemic respiratory depression (HG/RD; n = 10). The HG animals were maintained at < 1.5 mmol (mean 1 mmol) serum glucose concentration for 2 to 6.6 hours. The respiratory depression was associated with Pao2 and Paco2 values of ~50 mm Hg for 1 hour and of ~35 and ~75 mm Hg, respectively, for the second hour. Magnetic resonance diffusion-weighted imaging estimated brain energy state before, during, and after hypoglycemia. The hypoglycemic respiratory depression exposures were terminated either to euglycemia (n = 4) or to hyperglycemia (n = 6). Brain injury was assessed after 5 to 7 days of survival. Cats exposed to hypoglycemia alone maintained unchanged diffusion coefficients; that is, they lacked evidence of brain energy failure and all six remained brain-intact. Only 1 of 5 euglycemic RD but 10 of 10 HG/RD cats developed brain damage (HG and RD vs. HG/RD, P < 0.01). This difference in brain injury rates suggests injury potentiation by hypoglycemia and respiratory depression acting together. Three injury patterns emerged, including activation of microglia, selective neuronal necrosis, and laminar cortical necrosis. Widespread activation of microglia suggesting damage to neuronal cell processes affected all damaged brains. Selective neuronal necrosis affecting the cerebral cortex, hippocampus, and basal ganglia was observed in all but one case. Instances of laminar cortical necrosis were limited to cats exposed to hypoglycemic respiratory depression treated with hyperglycemia. Thus, treatment with hyperglycemia compared with euglycemia after hypoglycemic respiratory depression exposures significantly increased the brain injury scores (24 ± 6 vs. 13 ± 2 points; P < 0.05). This new experimental hypoglycemia models contribution lies in recognizing additional factors that critically define the occurrence of hypoglycemic brain injury.


Pediatric Blood & Cancer | 2012

Preclincial testing of sorafenib and RAD001 in the Nf(flox/flox) ;DhhCre mouse model of plexiform neurofibroma using magnetic resonance imaging.

Jianqiang Wu; Eva Dombi; Edwin Jousma; R. Scott Dunn; Diana M. Lindquist; Beverly Schnell; Mi-Ok Kim; AeRang Kim; Brigitte C. Widemann; Timothy P. Cripe; Nancy Ratner

Neurofibromatosis type 1 (NF1) is an inherited disease predisposing affected patients to variable numbers of benign neurofibromas. To date there are no effective chemotherapeutic drugs available for this slow growing tumor. Molecularly targeted agents that aim to slow neurofibroma growth are being tested in clinical trials. So preclinical models for testing potential therapies are urgently needed to prioritize drugs for clinical trials of neurofibromas.


The Journal of Neuroscience | 2009

Therapeutic Administration of Plasminogen Activator Inhibitor-1 Prevents Hypoxic–Ischemic Brain Injury in Newborns

Dianer Yang; Niza Nemkul; Ahmed Shereen; Alice Jone; R. Scott Dunn; Daniel A. Lawrence; Diana M. Lindquist; Chia Yi Kuan

Disruption of the integrity of the blood–brain barrier (BBB) is an important mechanism of cerebrovascular diseases, including neonatal cerebral hypoxia–ischemia (HI). Although both tissue-type plasminogen activator (tPA) and matrix metalloproteinase-9 (MMP-9) can produce BBB damage, their relationship in neonatal cerebral HI is unclear. Here we use a rodent model to test whether the plasminogen activator (PA) system is critical for MMP-9 activation and HI-induced brain injury in newborns. To test this hypothesis, we examined the therapeutic effect of intracerebroventricular injection of plasminogen activator inhibitor-1 (PAI-1) in rat pups subjected to unilateral carotid artery occlusion and systemic hypoxia. We found that the injection of PAI-1 greatly reduced the activity of both tPA and urokinase-type plasminogen activator after HI. It also blocked HI-induced MMP-9 activation and BBB permeability at 24 h of recovery. Furthermore, magnetic resonance imaging and histological analysis showed the PAI-1 treatment reduced brain edema, axonal degeneration, and cortical cell death at 24–48 h of recovery. Finally, the PAI-1 therapy provided a dose-dependent decrease of brain tissue loss at 7 d of recovery, with the therapeutic window at 4 h after the HI insult. Together, these results suggest that the brain PA system plays a pivotal role in neonatal cerebral HI and may be a promising therapeutic target in infants suffering hypoxic–ischemic encephalopathy.


The Journal of Neuroscience | 2014

Blocking Lymphocyte Trafficking with FTY720 Prevents Inflammation-Sensitized Hypoxic–Ischemic Brain Injury in Newborns

Dianer Yang; Yu Yo Sun; Siddhartha Kumar Bhaumik; Yikun Li; Jessica M. Baumann; Xiaoyi Lin; Yujin Zhang; Shang Hsuan Lin; R. Scott Dunn; Chia Yang Liu; Feng Shiun Shie; Yi-Hsuan Lee; Marsha Wills-Karp; Claire A. Chougnet; Suhas G. Kallapur; Ian P. Lewkowich; Diana M. Lindquist; Kaja Murali-Krishna; Chia Yi Kuan

Intrauterine infection (chorioamnionitis) aggravates neonatal hypoxic–ischemic (HI) brain injury, but the mechanisms linking systemic inflammation to the CNS damage remain uncertain. Here we report evidence for brain influx of T-helper 17 (TH17)-like lymphocytes to coordinate neuroinflammatory responses in lipopolysaccharide (LPS)-sensitized HI injury in neonates. We found that both infants with histological chorioamnionitis and rat pups challenged by LPS/HI have elevated expression of the interleukin-23 (IL-23) receptor, a marker of early TH17 lymphocytes, in the peripheral blood mononuclear cells. Post-LPS/HI administration of FTY720 (fingolimod), a sphingosine-1-phosphate receptor agonist that blocks lymphocyte trafficking, mitigated the influx of leukocytes through the choroid plexus and acute induction of nuclear factor-κB signaling in the brain. Subsequently, the FTY720 treatment led to attenuated blood–brain barrier damage, fewer cluster of differentiation 4-positive, IL-17A-positive T-cells in the brain, less proinflammatory cytokine, and better preservation of growth and white matter functions. The FTY720 treatment also provided dose-dependent reduction of brain atrophy, rescuing >90% of LPS/HI-induced brain tissue loss. Interestingly, FTY720 neither opposed pure-HI brain injury nor directly inhibited microglia in both in vivo and in vitro models, highlighting its unique mechanism against inflammation-sensitized HI injury. Together, these results suggest that the dual hit of systemic inflammation and neonatal HI injury triggers early onset of the TH17/IL-17-mediated immunity, which causes severe brain destruction but responds remarkably to the therapeutic blockade of lymphocyte trafficking.


Experimental Neurology | 2013

Intranasal delivery of cell-penetrating anti-NF-κB peptides (Tat-NBD) alleviates infection-sensitized hypoxic-ischemic brain injury.

Dianer Yang; Yu-Yo Sun; Xiaoyi Lin; Jessica M. Baumann; R. Scott Dunn; Diana M. Lindquist; Chia-Yi Kuan

Perinatal infection aggravates neonatal hypoxic-ischemic (HI) brain injury and may interfere with therapeutic hypothermia. While the NF-κB signaling pathway has been implicated in microglia activation in infection-sensitized HI, the current therapeutic strategies rely on systemic intervention, which could impair neonatal immunity and increase the risk of severe infection. To devise a brain-targeted anti-NF-κB strategy, we examined the effects of intranasal delivery of tat-NBD peptides in two animal models of neonatal infection-sensitized HI. Kinetic experiments showed that tat-NBD peptides entered the olfactory bulbs rapidly (10-30 min) and peaked in the cerebral cortex around 60 min after intranasal application in P7 rats. Further, intranasal delivery of 1.4 mg/kg tat-NBD, which is only 7% of the intravenous dose in past studies, markedly attenuated NF-κB signaling, microglia activation, and brain damage triggered by HI with 4 or 72 h pre-exposure to the bacterial endotoxin lipopolysaccharide (LPS). In contrast, intranasal delivery of mutant tat-NBD peptides or systemic application of minocycline failed to block LPS-sensitized HI injury. Yet, intranasal delivery of up to 5.6 mg/kg tat-NBD peptides immediately after pure-HI insult showed little protection, likely due to its rapid clearance from the brain and inability to inhibit parenchymal plasminogen activators. Together, these results suggest a novel therapy of infection-sensitized HI brain injury in newborns.


Cerebral Cortex | 2013

Plasminogen Activator Inhibitor-1 Mitigates Brain Injury in a Rat Model of Infection-Sensitized Neonatal Hypoxia–Ischemia

Dianer Yang; Yu Yo Sun; Niza Nemkul; Jessica M. Baumann; Ahmed Shereen; R. Scott Dunn; Marsha Wills-Karp; Daniel A. Lawrence; Diana M. Lindquist; Chia Yi Kuan

Intrauterine infection exacerbates neonatal hypoxic-ischemic (HI) brain injury and impairs the development of cerebral cortex. Here we used low-dose lipopolysaccharide (LPS) pre-exposure followed by unilateral cerebral HI insult in 7-day-old rats to study the pathogenic mechanisms. We found that LPS pre-exposure blocked the HI-induced proteolytic activity of tissue-type plasminogen activator (tPA), but significantly enhanced NF-κB signaling, microglia activation, and the production of pro-inflammatory cytokines in newborn brains. Remarkably, these pathogenic responses were all blocked by intracerebroventricular injection of a stable-mutant form of plasminogen activator protein-1 called CPAI. Similarly, LPS pre-exposure amplified, while CPAI therapy mitigated HI-induced blood-brain-barrier damage and the brain tissue loss with a therapeutic window at 4 h after the LPS/HI insult. The CPAI also blocks microglia activation following a brain injection of LPS, which requires the contribution by tPA, but not the urinary-type plasminogen activator (uPA), as shown by experiments in tPA-null and uPA-null mice. These results implicate the nonproteolytic tPA activity in LPS/HI-induced brain damage and microglia activation. Finally, the CPAI treatment protects near-normal motor and white matter development despite neonatal LPS/HI insult. Together, because CPAI blocks both proteolytic and nonproteolytic tPA neurotoxicity, it is a promising therapeutics of neonatal HI injury either with or without infection.


PLOS ONE | 2014

Synergy of Combined tPA-Edaravone Therapy in Experimental Thrombotic Stroke

Yu Yo Sun; Yury M. Morozov; Dianer Yang; Yikun Li; R. Scott Dunn; Pasko Rakic; Pak H. Chan; Koji Abe; Diana M. Lindquist; Chia Yi Kuan

Edaravone, a potent antioxidant, may improve thrombolytic therapy because it benefits ischemic stroke patients on its own and mitigates adverse effects of tissue plasminogen activator (tPA) in preclinical models. However, whether the combined tPA-edaravone therapy is more effective in reducing infarct size than singular treatment is uncertain. Here we investigated this issue using a transient hypoxia-ischemia (tHI)-induced thrombotic stroke model, in which adult C57BL/6 mice were subjected to reversible ligation of the unilateral common carotid artery plus inhalation of 7.5% oxygen for 30 min. While unilateral occlusion of the common carotid artery suppressed cerebral blood flow transiently, the addition of hypoxia triggered reperfusion deficits, endogenous thrombosis, and attenuated tPA activity, leading up to infarction. We compared the outcomes of vehicle-controls, edaravone treatment, tPA treatment at 0.5, 1, or 4 h post-tHI, and combined tPA-edaravone therapies with mortality rate and infarct size as the primary end-points. The best treatment was further compared with vehicle-controls in behavioral, biochemical, and diffusion tensor imaging (DTI) analyses. We found that application of tPA at 0.5 or 1 h – but not at 4 h post-tHI – significantly decreased infarct size and showed synergistic (p<0.05) or additive benefits with the adjuvant edaravone treatment, respectively. The acute tPA-edaravone treatment conferred >50% reduction of mortality, ∼80% decline in infarct size, and strong white-matter protection. It also improved vascular reperfusion and decreased oxidative stress, inflammatory cytokines, and matrix metalloproteinase activities. In conclusion, edaravone synergizes with acute tPA treatment in experimental thrombotic stroke, suggesting that clinical application of the combined tPA-edaravone therapy merits investigation.


PLOS ONE | 2012

CMV Infection Attenuates the Disease Course in a Murine Model of Multiple Sclerosis

Istvan Pirko; Rhonda D. Cardin; Yi Chen; Anne K. Lohrey; Diana M. Lindquist; R. Scott Dunn; Robert Zivadinov; Aaron J. Johnson

Recent evidence in multiple sclerosis (MS) suggests that active CMV infection may result in more benign clinical disease. The goal of this pilot study was to determine whether underlying murine CMV (MCMV) infection affects the course of the Theilers murine encephalitis virus (TMEV) induced murine model of MS. A group of eight TMEV-infected mice were co-infected with MCMV at 2 weeks prior to TMEV infection while a second group of TMEV-infected mice received MCMV two weeks post TMEV. We also used 2 control groups, where at the above time points MCMV was replaced with PBS. Outcome measures included (1) monthly monitoring of disability via rotarod for 8 months; (2) in vivo MRI for brain atrophy studies and (3) FACS analysis of brain infiltrating lymphocytes at 8 months post TMEV infection. Co-infection with MCMV influenced the disease course in mice infected prior to TMEV infection. In this group, rotarod detectable motor performance was significantly improved starting 3 months post-infection and beyond (p≤0.024). In addition, their brain atrophy was close to 30% reduced at 8 months, but this was only present as a trend due to low power (p = 0.19). A significant reduction in the proportion of brain infiltrating CD3+ cells was detected in this group (p = 0.026), while the proportion of CD45+ Mac1+ cells significantly increased (p = 0.003). There was also a strong trend for a reduced proportion of CD4+ cells (p = 0.17) while CD8 and B220+ cell proportion did not change. These findings support an immunomodulatory effect of MCMV infection in this MS model. Future studies in this co-infection model will provide insight into mechanisms which modulate the development of demyelination and may be utilized for the development of novel therapeutic strategies.

Collaboration


Dive into the R. Scott Dunn's collaboration.

Top Co-Authors

Avatar

Diana M. Lindquist

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dianer Yang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott K. Holland

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed Shereen

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anne K. Lohrey

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica M. Baumann

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Niza Nemkul

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge