Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Sean Hill is active.

Publication


Featured researches published by R. Sean Hill.


Nature Genetics | 2004

Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex

Volney L. Sheen; Vijay S. Ganesh; Meral Topçu; Guillaume Sébire; Adria Bodell; R. Sean Hill; P. Ellen Grant; Yin Yao Shugart; Jaime Imitola; Samia J. Khoury; Renzo Guerrini; Christopher A. Walsh

Disruption of human neural precursor proliferation can give rise to a small brain (microcephaly), and failure of neurons to migrate properly can lead to an abnormal arrest of cerebral cortical neurons in proliferative zones near the lateral ventricles (periventricular heterotopia). Here we show that an autosomal recessive condition characterized by microcephaly and periventricular heterotopia maps to chromosome 20 and is caused by mutations in the gene ADP-ribosylation factor guanine nucleotide-exchange factor-2 (ARFGEF2). By northern-blot analysis, we found that mouse Arfgef2 mRNA levels are highest during embryonic periods of ongoing neuronal proliferation and migration, and by in situ hybridization, we found that the mRNA is widely distributed throughout the embryonic central nervous system (CNS). ARFGEF2 encodes the large (>200 kDa) brefeldin A (BFA)-inhibited GEF2 protein (BIG2), which is required for vesicle and membrane trafficking from the trans-Golgi network (TGN). Inhibition of BIG2 by BFA, or by a dominant negative ARFGEF2 cDNA, decreases cell proliferation in vitro, suggesting a cell-autonomous regulation of neural expansion. Inhibition of BIG2 also disturbed the intracellular localization of such molecules as E-cadherin and β-catenin by preventing their transport from the Golgi apparatus to the cell surface. Our findings show that vesicle trafficking is an important regulator of proliferation and migration during human cerebral cortical development.


Neuron | 2013

Using Whole-Exome Sequencing to Identify Inherited Causes of Autism

Maria H. Chahrour; Michael E. Coulter; Sarn Jiralerspong; Kazuko Okamura-Ikeda; Klaus Schmitz-Abe; David A. Harmin; Mazhar Adli; Athar N. Malik; Alissa M. D’Gama; Elaine T. Lim; Stephan J. Sanders; Ganesh H. Mochida; Jennifer N. Partlow; Christine M. Sunu; Jillian M. Felie; Jacqueline Rodriguez; Ramzi Nasir; Janice Ware; Robert M. Joseph; R. Sean Hill; Benjamin Y. Kwan; Muna Al-Saffar; Nahit Motavalli Mukaddes; Asif Hashmi; Soher Balkhy; Generoso G. Gascon; Fuki M. Hisama; Elaine LeClair; Annapurna Poduri; Ozgur Oner

Despite significant heritability of autism spectrum disorders (ASDs), their extreme genetic heterogeneity has proven challenging for gene discovery. Studies of primarily simplex families have implicated de novo copy number changes and point mutations, but are not optimally designed to identify inherited risk alleles. We apply whole-exome sequencing (WES) to ASD families enriched for inherited causes due to consanguinity and find familial ASD associated with biallelic mutations in disease genes (AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1). At least some of these genes show biallelic mutations in nonconsanguineous families as well. These mutations are often only partially disabling or present atypically, with patients lacking diagnostic features of the Mendelian disorders with which these genes are classically associated. Our study shows the utility of WES for identifying specific genetic conditions not clinically suspected and the importance of partial loss of gene function in ASDs.


Neuron | 2012

Somatic Activation of AKT3 Causes Hemispheric Developmental Brain Malformations

Annapurna Poduri; Gilad D. Evrony; Xuyu Cai; Princess C. Elhosary; Rameen Beroukhim; Maria K. Lehtinen; L. Benjamin Hills; Erin L. Heinzen; Anthony D. Hill; R. Sean Hill; Brenda J. Barry; Blaise F. D. Bourgeois; James J. Riviello; A. James Barkovich; Peter McL. Black; Keith L. Ligon; Christopher A. Walsh

Hemimegalencephaly (HMG) is a developmental brain disorder characterized by an enlarged, malformed cerebral hemisphere, typically causing epilepsy that requires surgical resection. We studied resected HMG tissue to test whether the condition might reflect somatic mutations affecting genes critical to brain development. We found that two out of eight HMG samples showed trisomy of chromosome 1q, which encompasses many genes, including AKT3, a gene known to regulate brain size. A third case showed a known activating mutation in AKT3 (c.49G→A, creating p.E17K) that was not present in the patients blood cells. Remarkably, the E17K mutation in AKT3 is exactly paralogous to E17K mutations in AKT1 and AKT2 recently discovered in somatic overgrowth syndromes. We show that AKT3 is the most abundant AKT paralog in the brain during neurogenesis and that phosphorylated AKT is abundant in cortical progenitor cells. Our data suggest that somatic mutations limited to the brain could represent an important cause of complex neurogenetic disease.


Nature Genetics | 2007

Mutations in LRP2 , which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes

Sibel Kantarci; Lihadh Al-Gazali; R. Sean Hill; Dian Donnai; Graeme C.M. Black; Eric Bieth; Nicolas Chassaing; Didier Lacombe; Koenraad Devriendt; Ahmad S. Teebi; Maria Loscertales; Caroline D. Robson; Tianming Liu; David T. MacLaughlin; Kristin M Noonan; Meaghan K Russell; Christopher A. Walsh; Patricia K. Donahoe; Barbara R. Pober

Donnai-Barrow syndrome is associated with agenesis of the corpus callosum, congenital diaphragmatic hernia, facial dysmorphology, ocular anomalies, sensorineural hearing loss and developmental delay. By studying multiplex families, we mapped this disorder to chromosome 2q23.3–31.1 and identified LRP2 mutations in six families with Donnai-Barrow syndrome and one family with facio-oculo-acoustico-renal syndrome. LRP2 encodes megalin, a multiligand uptake receptor that regulates levels of diverse circulating compounds. This work implicates a pathway with potential pharmacological therapeutic targets.


Nature Genetics | 2010

Mutations in PNKP cause microcephaly, seizures and defects in DNA repair

Jun Shen; Edward C. Gilmore; Christine A Marshall; Mary Haddadin; John J. Reynolds; Wafaa Eyaid; Adria Bodell; Brenda J. Barry; Danielle Gleason; Kathryn Allen; Vijay S. Ganesh; Bernard S. Chang; Arthur W. Grix; R. Sean Hill; Meral Topçu; Keith W. Caldecott; A. James Barkovich; Christopher A. Walsh

Maintenance of DNA integrity is crucial for all cell types, but neurons are particularly sensitive to mutations in DNA repair genes, which lead to both abnormal development and neurodegeneration. We describe a previously unknown autosomal recessive disease characterized by microcephaly, early-onset, intractable seizures and developmental delay (denoted MCSZ). Using genome-wide linkage analysis in consanguineous families, we mapped the disease locus to chromosome 19q13.33 and identified multiple mutations in PNKP (polynucleotide kinase 3′-phosphatase) that result in severe neurological disease; in contrast, a splicing mutation is associated with more moderate symptoms. Unexpectedly, although the cells of individuals carrying this mutation are sensitive to radiation and other DNA-damaging agents, no such individual has yet developed cancer or immunodeficiency. Unlike other DNA repair defects that affect humans, PNKP mutations universally cause severe seizures. The neurological abnormalities in individuals with MCSZ may reflect a role for PNKP in several DNA repair pathways.


American Journal of Human Genetics | 2012

Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome

M. Chiara Manzini; Dimira E. Tambunan; R. Sean Hill; Thomas M. Maynard; Erin L. Heinzen; Christine Stevens; Jennifer N. Partlow; Brenda J. Barry; Jacqueline Rodriguez; Vandana Gupta; Abdel Karim Al-Qudah; Wafaa Eyaid; Jan M. Friedman; Mustafa A. Salih; Robin D. Clark; Isabella Moroni; Marina Mora; Alan H. Beggs; Stacey Gabriel; Christopher A. Walsh

Whole-exome sequencing (WES), which analyzes the coding sequence of most annotated genes in the human genome, is an ideal approach to studying fully penetrant autosomal-recessive diseases, and it has been very powerful in identifying disease-causing mutations even when enrollment of affected individuals is limited by reduced survival. In this study, we combined WES with homozygosity analysis of consanguineous pedigrees, which are informative even when a single affected individual is available, to identify genetic mutations responsible for Walker-Warburg syndrome (WWS), a genetically heterogeneous autosomal-recessive disorder that severely affects the development of the brain, eyes, and muscle. Mutations in seven genes are known to cause WWS and explain 50%-60% of cases, but multiple additional genes are expected to be mutated because unexplained cases show suggestive linkage to diverse loci. Using WES in consanguineous WWS-affected families, we found multiple deleterious mutations in GTDC2 (also known as AGO61). GTDC2s predicted role as an uncharacterized glycosyltransferase is consistent with the function of other genes that are known to be mutated in WWS and that are involved in the glycosylation of the transmembrane receptor dystroglycan. Therefore, to explore the role of GTDC2 loss of function during development, we used morpholino-mediated knockdown of its zebrafish ortholog, gtdc2. We found that gtdc2 knockdown in zebrafish replicates all WWS features (hydrocephalus, ocular defects, and muscular dystrophy), strongly suggesting that GTDC2 mutations cause WWS.


American Journal of Human Genetics | 2009

A Truncating Mutation of TRAPPC9 Is Associated with Autosomal-Recessive Intellectual Disability and Postnatal Microcephaly

Ganeshwaran H. Mochida; Muhammad Mahajnah; Anthony D. Hill; Lina Basel-Vanagaite; Danielle Gleason; R. Sean Hill; Adria Bodell; Moira Crosier; Rachel Straussberg; Christopher A. Walsh

Although autosomal genes are increasingly recognized as important causes of intellectual disability, very few of them are known. We identified a genetic locus for autosomal-recessive nonsyndromic intellectual disability associated with variable postnatal microcephaly through homozygosity mapping of a consanguineous Israeli Arab family. Sequence analysis of genes in the candidate interval identified a nonsense nucleotide change in the gene that encodes TRAPPC9 (trafficking protein particle complex 9, also known as NIBP), which has been implicated in NF-kappaB activation and possibly in intracellular protein trafficking. TRAPPC9 is highly expressed in the postmitotic neurons of the cerebral cortex, and MRI analysis of affected patients shows defects in axonal connectivity. This suggests essential roles of TRAPPC9 in human brain development, possibly through its effect on NF-kappaB activation and protein trafficking in the postmitotic neurons of the cerebral cortex.


American Journal of Human Genetics | 2014

Mutations in QARS, Encoding Glutaminyl-tRNA Synthetase, Cause Progressive Microcephaly, Cerebral-Cerebellar Atrophy, and Intractable Seizures

Xiaochang Zhang; Jiqiang Ling; Giulia Barcia; Lili Jing; Jiang Wu; Brenda J. Barry; Ganeshwaran H. Mochida; R. Sean Hill; Jill M. Weimer; Quinn P. Stein; Annapurna Poduri; Jennifer N. Partlow; Dorothée Ville; Olivier Dulac; Anh Thu N Lam; Sarah Servattalab; Jacqueline Rodriguez; Nathalie Boddaert; Arnold Munnich; Laurence Colleaux; Leonard I. Zon; Dieter Söll; Christopher A. Walsh; Rima Nabbout

Progressive microcephaly is a heterogeneous condition with causes including mutations in genes encoding regulators of neuronal survival. Here, we report the identification of mutations in QARS (encoding glutaminyl-tRNA synthetase [QARS]) as the causative variants in two unrelated families affected by progressive microcephaly, severe seizures in infancy, atrophy of the cerebral cortex and cerebellar vermis, and mild atrophy of the cerebellar hemispheres. Whole-exome sequencing of individuals from each family independently identified compound-heterozygous mutations in QARS as the only candidate causative variants. QARS was highly expressed in the developing fetal human cerebral cortex in many cell types. The four QARS mutations altered highly conserved amino acids, and the aminoacylation activity of QARS was significantly impaired in mutant cell lines. Variants p.Gly45Val and p.Tyr57His were located in the N-terminal domain required for QARS interaction with proteins in the multisynthetase complex and potentially with glutamine tRNA, and recombinant QARS proteins bearing either substitution showed an over 10-fold reduction in aminoacylation activity. Conversely, variants p.Arg403Trp and p.Arg515Trp, each occurring in a different family, were located in the catalytic core and completely disrupted QARS aminoacylation activity in vitro. Furthermore, p.Arg403Trp and p.Arg515Trp rendered QARS less soluble, and p.Arg403Trp disrupted QARS-RARS (arginyl-tRNA synthetase 1) interaction. In zebrafish, homozygous qars loss of function caused decreased brain and eye size and extensive cell death in the brain. Our results highlight the importance of QARS during brain development and that epilepsy due to impairment of QARS activity is unusually severe in comparison to other aminoacyl-tRNA synthetase disorders.


American Journal of Medical Genetics Part A | 2007

A 2-Mb critical region implicated in the microcephaly associated with terminal 1q deletion syndrome.

Anthony D. Hill; Bernard S. Chang; R. Sean Hill; Levi A. Garraway; Adria Bodell; William R. Sellers; Christopher A. Walsh

Patients with distal deletions of chromosome 1q have a recognizable syndrome that includes microcephaly, hypoplasia or agenesis of the corpus callosum, and psychomotor retardation. Although these symptoms have been attributed to deletions of 1q42‐1q44, the minimal chromosomal region involved has not been identified. Using microsatellite and single nucleotide polymorphism (SNP) markers, we have mapped the deleted regions in seven patients with terminal deletions of chromosome 1q to define a 2.0‐Mb microcephaly critical region including the 1q43‐1q44 boundary and no more than 11 genes.


Human Mutation | 2008

Ethnically diverse causes of Walker-Warburg syndrome (WWS): FCMD mutations are a more common cause of WWS outside of the Middle East.

M. Chiara Manzini; Danielle Gleason; Bernard S. Chang; R. Sean Hill; Brenda J. Barry; Jennifer N. Partlow; Annapurna Poduri; Sophie Currier; Patricia Galvin-Parton; Lawrence R. Shapiro; Karen Schmidt; Jessica G. Davis; Lina Basel-Vanagaite; Mohamed Z. Seidahmed; Mustafa A. Salih; William B. Dobyns; Christopher A. Walsh

Walker‐Warburg syndrome (WWS) is a genetically heterogeneous autosomal recessive disease characterized by congenital muscular dystrophy, cobblestone lissencephaly, and ocular malformations. Mutations in six genes involved in the glycosylation of á‐dystroglycan (POMT1, POMT2, POMGNT1, FCMD, FKRP and LARGE) have been identified in WWS patients, but account for only a portion of WWS cases. To better understand the genetics of WWS and establish the frequency and distribution of mutations across WWS genes, we genotyped all known loci in a cohort of 43 WWS patients of varying geographical and ethnic origin. Surprisingly, we reached a molecular diagnosis for 40% of our patients and found mutations in POMT1, POMT2, FCMD and FKRP, many of which were novel alleles, but no mutations in POMGNT1 or LARGE. Notably, the FCMD gene was a more common cause of WWS than previously expected in the European/American subset of our cohort, including all Ashkenazi Jewish cases, who carried the same founder mutation.

Collaboration


Dive into the R. Sean Hill's collaboration.

Top Co-Authors

Avatar

Christopher A. Walsh

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer N. Partlow

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brenda J. Barry

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danielle Gleason

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Muna Al-Saffar

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Adria Bodell

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Annapurna Poduri

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jillian M. Felie

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge