R. Shivaji
University of North Carolina at Greensboro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Shivaji.
Transactions of the American Mathematical Society | 2002
Shobha Oruganti; Junping Shi; R. Shivaji
We consider a reaction-diffusion equation which models the constant yield harvesting to a spatially heterogeneous population which satisfies a logistic growth. We prove the existence, uniqueness and stability of the maximal steady state solutions under certain conditions, and we also classify all steady state solutions under more restricted conditions. Exact global bifurcation diagrams are obtained in the latter case. Our method is a combination of comparison arguments and bifurcation theory.
Proceedings of the American Mathematical Society | 1989
Alfonso Castro; R. Shivaji
We consider the existence of radially symmetric non-negative solu- tions for the boundary value problem -Au(x) = lf{u(x)) IMI 2) u(x) = 0 ||*|| = 1 where X > 0, f(0) 0 and / is superlinear. We establish existence of non-negative solutions for A small which extends some work of our previous paper on non-positone problems, where we considered the case N = \ . Our work also proves a recent conjecture by Joel Smoller and
Results in Mathematics | 1993
Alfonso Castro; J. B Garner; R. Shivaji
We consider the semipositone problem % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!
Abstract and Applied Analysis | 2004
Shobha Oruganti; Junping Shi; R. Shivaji
Communications in Partial Differential Equations | 1995
Alfonso Castro; M. Hassanpour; R. Shivaji
{\matrix {-\Delta u (x)= \lambda f (u(x))\ \ \; \ \ \ \ \ x \in \Omega \cr \qquad \qquad \qquad u(x)=0 \ \ \ \;\ \ \ \ x \in \partial \Omega \cr}}
Proceedings of the American Mathematical Society | 1993
Ismael Ali; Alfonso Castro; R. Shivaji
Journal of Mathematical Analysis and Applications | 1990
J.B Garner; R. Shivaji
where λ > 0 is a constant, Ω is a bounded region in Rn with a smooth boundary, and f is a smooth function such that f ′(u) is bounded below, f (0) < 0 and % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!
Proceedings of the Royal Society of Edinburgh: Section A Mathematics | 1997
Alfonso Castro; Sudhasree Gadam; R. Shivaji
{\rm lim}_{u \rightarrow}+\infty {f(u)\over u}=0.
Journal of Mathematical Analysis and Applications | 1985
R. Shivaji
We prove under some additional conditions the existence of a positive solution (1) for λ ∈ I where I is an interval close to the smallest eigenvalue of —Δ with Dirichlet boundary condition and (2) for λ large. We also prove that our solution u for λ large is such that∥u∥ ≔ supx∈Ω ¦u(x)¦ → ∞ as A → ∞. Our methods are based on sub and super solutions. In particular, we use an anti maximum principle to obtain a subsolution for our existence result for λ ∈ I.
Applied Mathematics Letters | 2009
Eun Kyoung Lee; R. Shivaji; Jinglong Ye
We consider the positive solutions of a quasilinear elliptic equation with p-Laplacian, logistic-type growth rate function, and a constant yield harvesting. We use sub-super-solution methods to prove the existence of a maximal positive solution when the harvesting rate is under a certain positive constant.