R. Smit
Durham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Smit.
The Astrophysical Journal | 2015
R. J. Bouwens; G. D. Illingworth; P. A. Oesch; Michele Trenti; Ivo Labbé; L. Bradley; Marcella Carollo; P. G. van Dokkum; V. Gonzalez; Benne W. Holwerda; Marijn Franx; Lee R. Spitler; R. Smit; D. Magee
The remarkable Hubble Space Telescope?(HST) data sets from the CANDELS, HUDF09, HUDF12, ERS, and BoRG/HIPPIES programs have allowed us to map the evolution of the rest-frame UV luminosity function (LF) from to . We develop new color criteria that more optimally utilize the full wavelength coverage from the optical, near-IR, and mid-IR observations over our search fields, while simultaneously minimizing the incompleteness and eliminating redshift gaps. We have identified 5859, 3001, 857, 481, 217, and 6 galaxy candidates at , , , , , and , respectively, from the ?1000 arcmin2 area covered by these data sets. This sample of >10,000 galaxy candidates at is by far the largest assembled to date with HST. The selection of 4?8 candidates over the five CANDELS fields allows us to assess the cosmic variance; the largest variations are at . Our new LF determinations at and span a 6 mag baseline and reach to ?16 AB mag. These determinations agree well with previous estimates, but the larger samples and volumes probed here result in a more reliable sampling of galaxies and allow us to reassess the form of the UV LFs. Our new LF results strengthen our earlier findings to significance for a steeper faint-end slope of the UV LF at , with ? evolving from at to at (and at ), consistent with that expected from the evolution of the halo mass function. We find less evolution in the characteristic magnitude M* from to the observed evolution in the LF is now largely represented by changes in . No evidence for a non-Schechter-like form to the z ? 4?8 LFs is found. A simple conditional LF model based on halo growth and evolution in the M/L ratio of halos provides a good representation of the observed evolution.
The Astrophysical Journal | 2014
P. A. Oesch; R. J. Bouwens; G. D. Illingworth; Ivo Labbé; R. Smit; Marijn Franx; P. G. van Dokkum; Ivelina Momcheva; M. L. N. Ashby; G. G. Fazio; Jia-Sheng Huang; S. P. Willner; V. Gonzalez; D. Magee; Michele Trenti; Gabriel B. Brammer; Rosalind E. Skelton; Lee R. Spitler
We present the discovery of four surprisingly bright (H160 � 26 27 mag AB) galaxy candidates at z � 9 10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z � 10 galaxy candidates that are known, just �500 Myr after the Big Bang. Two similarly bright sources are also detected in a systematic re-analysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5 6.2� in the very deep Spitzer/IRAC 4.5µm data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z = 10.2 ± 0.4) is robustly detected also at 3.6µm (6.9�), revealing a flat UV spectral energy distribution with a slope � = 2.0±0.2, consistent with demonstrated trends with luminosity at high redshift. The abundance of such luminous candidates suggests that the luminosity function evolves more significantly in �∗ than in L∗ at z & 8 with a higher number density of bright sources than previously expected. Despite the discovery of these luminous candidates, the cosmic star formation rate density for galaxies with SFR > 0.7 M⊙ yr −1 shows an order-of-magnitude increase in only 170 Myr from z � 10 to z � 8, consistent with previous results given the dominance of low-luminosity sources to the total SFR density. Based on the IRAC detections, we derive galaxy stellar masses at z � 10, finding that these luminous objects are typically 10 9 M⊙. This allows for a first estimate of the cosmic stellar mass density at z � 10 resulting in log10 �∗ = 4.7 +0.5 −0.8 M⊙ Mpc −3 for galaxies brighter than MUV � 18. The remarkable brightness, and hence luminosity, of these z � 9 10 candidates highlights the opportunity for deep spectroscopy to determine their redshift and nature, demonstrates the value of additional search fields covering a wider area to understand star-formation in the very early universe, and highlights the opportunities for JWST to map the buildup of galaxies at redshifts much earlier than z � 10. Subject headings: galaxies: evolution — galaxies: high-redshift — galaxies: luminosity function
The Astrophysical Journal | 2014
R. J. Bouwens; L. Bradley; Adi Zitrin; D. Coe; Marijn Franx; W. Zheng; R. Smit; Ole Host; Marc Postman; Leonidas A. Moustakas; Ivo Labbé; Mauricio Carrasco; A. Molino; Megan Donahue; D. Kelson; Massimo Meneghetti; N. Benítez; Doron Lemze; Keiichi Umetsu; Tom Broadhurst; John Moustakas; P. Rosati; S. Jouvel; Matthias Bartelmann; Holland C. Ford; Genevieve J. Graves; C. Grillo; L. Infante; Y. Jimenez-Teja; Ofer Lahav
We utilise a two-color Lyman-Break selection criterion to search for z � 9-10 galaxies over the first 19 clusters in the CLASH program. Key to this search are deep observations over our clusters in five near-IR passbands to 1.6µm, allowing us good constraints on the position of the Lyman break to z � 10. A systematic search yields three z � 9-10 candidates in total above a 6� detection limit. While we have already reported the most robust of these candidates, MACS1149-JD, in a previous publication, two additional z � 9 candidates are also revealed in our expanded search. The new candidates have H160-band AB magnitudes of �26.2-26.9 and are located behind MACSJ1115.9+0129 and MACSJ1720.3+3536. The observed H160 Spitzer/IRAC colors for the sources are sufficiently blue to strongly favor redshifts of z � 9 for these sources. A careful assessment of various sources of contamination suggests .1 contaminants for our z � 9-10 selection. To determine the implications of these search results for the LF and SFR density at z � 9, we introduce a new differential approach to deriving these quantities in lensing fields. Our procedure is to derive the evolution by comparing the number of z � 9-10 galaxy candidates found in CLASH with the number of galaxies in a slightly lower redshift sample (after correcting for the differences in selection volumes), here taken to be z � 8. This procedure takes advantage of the fact that the relative selection volumes available for the z � 8 and z � 9-10 selections behind lensing clusters are not greatly dependent on the details of the gravitational lensing models. We find that the normalization of the UV LF at z � 9 is just 0.22 +0.30 −0.15 × that at z � 8, �2 +31× lower than what we would infer extrapolating z � 4-8 LF results. These results therefore suggest a more rapid evolution in the UV LF at z > 8 than seen at lower redshifts (although the current evidence here is weak). Compared to similar evolutionary findings from the HUDF, our result is much more insensitive to large-scale structure uncertainties, given our many independent sightlines on the high-redshift universe. Subject headings: galaxies: evolution — galaxies: high-redshift
The Astrophysical Journal | 2015
R. J. Bouwens; G. D. Illingworth; P. A. Oesch; Joseph Caruana; Benne W. Holwerda; R. Smit; Stephen M. Wilkins
Thomson optical depth tau measurements from Planck provide new insights into the reionization of the universe. In pursuit of model-independent constraints on the properties of the ionising sources, we determine the empirical evolution of the cosmic ionizing emissivity. We use a simple two-parameter model to map out the evolution in the emissivity at z>~6 from the new Planck optical depth tau measurements, from the constraints provided by quasar absorption spectra and from the prevalence of Ly-alpha emission in z~7-8 galaxies. We find the redshift evolution in the emissivity dot{N}_{ion}(z) required by the observations to be d(log Nion)/dz=-0.15(-0.11)(+0.08), largely independent of the assumed clumping factor C_{HII} and entirely independent of the nature of the ionising sources. The trend in dot{N}_{ion}(z) is well-matched by the evolution of the galaxy UV-luminosity density (dlog_{10} rho_UV/dz=-0.11+/-0.04) to a magnitude limit >~-13 mag, suggesting that galaxies are the sources that drive the reionization of the universe. The role of galaxies is further strengthened by the conversion from the UV luminosity density rho_UV to dot(N)_{ion}(z) being possible for physically-plausible values of the escape fraction f_{esc}, the Lyman-continuum photon production efficiency xi_{ion}, and faint-end cut-off
The Astrophysical Journal | 2014
R. Smit; R. J. Bouwens; Ivo Labbé; W. Zheng; L. Bradley; Megan Donahue; Doron Lemze; John Moustakas; Keiichi Umetsu; Adi Zitrin; D. Coe; Marc Postman; V. Gonzalez; Matthias Bartelmann; N. Benítez; Tom Broadhurst; Holland C. Ford; C. Grillo; L. Infante; Y. Jimenez-Teja; S. Jouvel; D. Kelson; Ofer Lahav; D. Maoz; Elinor Medezinski; P. Melchior; Massimo Meneghetti; Julian Merten; A. Molino; Leonidas A. Moustakas
M_{lim}
Monthly Notices of the Royal Astronomical Society | 2015
Richard Massey; Liliya L. R. Williams; R. Smit; Mark Swinbank; Thomas D. Kitching; David Harvey; Mathilde Jauzac; Holger Israel; Douglas Clowe; A. C. Edge; Matt Hilton; Eric Jullo; Adrienne Leonard; Jori Liesenborgs; Julian Merten; Irshad Mohammed; Daisuke Nagai; Johan Richard; Andrew Robertson; Prasenjit Saha; Rebecca Santana; John P. Stott; Eric Tittley
to the luminosity function. Quasars/AGN appear to match neither the redshift evolution nor normalization of the ionizing emissivity. Based on the inferred evolution in the ionizing emissivity, we estimate that the z~10 UV-luminosity density is 8(-4)(+15)x lower than at
The Astrophysical Journal | 2012
R. Smit; R. J. Bouwens; Marijn Franx; Garth D. Illingworth; Ivo Labbé; P. A. Oesch; Pieter G. van Dokkum
z~6, consistent with the observations. The present approach of contrasting the inferred evolution of the ionizing emissivity with that of the galaxy UV luminosity density adds to the growing observational evidence that faint, star-forming galaxies drive the reionization of the universe.
The Astrophysical Journal | 2015
P. A. Oesch; P. G. van Dokkum; G. D. Illingworth; R. J. Bouwens; Ivelina Momcheva; B. Holden; G. W. Roberts-Borsani; R. Smit; Marijn Franx; Ivo Labbé; V. Gonzalez; D. Magee
Growing observational evidence indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z ~ 5-7 galaxies. This line emission makes z ~ 5-7 galaxies appear more massive, with lower specific star-formation rates (sSFRs). However, corrections for this line emission have been difficult to perform reliably because of huge uncertainties on the strength of such emission at z ≳ 5.5. In this paper, we present the most direct observational evidence thus far for ubiquitous high-equivalent-width (EW) [O III] + Hβ line emission in Lyman-break galaxies at z ~ 7, and we present a strategy for an improved measurement of the sSFR at z ~ 7. We accomplish this through the selection of bright galaxies in the narrow redshift window z ~ 6.6-7.0 where the Spitzer/Infrared Array Camera (IRAC) 4.5 μm flux provides a clean measurement of the stellar continuum light, in contrast with the 3.6 μm flux, which is contaminated by the prominent [O III] + Hβ lines. To ensure a high signal-to-noise ratio for our IRAC flux measurements, we consider only the brightest (H_(160) < 26 mag) magnified galaxies we have identified behind galaxy clusters. It is remarkable that the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5] = –0.9 ± 0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [O III] + Hβ is greater than 637 A for the average source. The four bluest sources from our seven-source sample require an even more extreme EW of 1582 A. We can also set a robust lower limit of ≳ 4 Gyr^(–1) on the sSFR of our sample based on the mean spectral energy distribution.
The Astrophysical Journal | 2016
P. A. Oesch; Gabriel B. Brammer; P. G. van Dokkum; G. D. Illingworth; R. J. Bouwens; Ivo Labbé; Marijn Franx; Ivelina Momcheva; M. L. N. Ashby; G. G. Fazio; Vanessa L. González; B. Holden; D. Magee; R. Skelton; R. Smit; Lee R. Spitler; Michele Trenti; S. P. Willner
Galaxy cluster Abell 3827 hosts the stellar remnants of four almost equally bright elliptical galaxies within a core of radius 10 kpc. Such corrugation of the stellar distribution is very rare, and suggests recent formation by several simultaneous mergers. We map the distribution of associated dark matter, using new Hubble Space Telescope imaging and Very Large Telescope/Multi-Unit Spectroscopic Explorer integral field spectroscopy of a gravitationally lensed system threaded through the cluster core. We find that each of the central galaxies retains a dark matter halo, but that (at least) one of these is spatially offset from its stars. The best-constrained offset is 1.62(-0.49)(+0.47) kpc, where the 68 per cent confidence limit includes both statistical error and systematic biases in mass modelling. Such offsets are not seen in field galaxies, but are predicted during the long infall to a cluster, if dark matter self-interactions generate an extra drag force. With such a small physical separation, it is difficult to definitively rule out astrophysical effects operating exclusively in dense cluster core environments - but if interpreted solely as evidence for self-interacting dark matter, this offset implies a cross-section sigma(DM)/(m) similar to (1.7 +/- 0.7) x 10(-4) cm(2) g(-1) x (t(infall)/10(9) yr)(-2), where t(infall) is the infall duration.
The Astrophysical Journal | 2015
Adi Zitrin; Ivo Labbé; Sirio Belli; R. J. Bouwens; Richard S. Ellis; G. W. Roberts-Borsani; Daniel P. Stark; P. A. Oesch; R. Smit
We combine recent estimates of dust extinction at z ~ 4-7 with UV luminosity function (LF) determinations to derive star formation rate (SFR) functions at z ~ 4-7. SFR functions provide a more physical description of galaxy buildup at high redshift and allow for direct comparisons to SFRs at lower redshifts determined by a variety of techniques. Our SFR functions are derived from well-established z ~ 4-7 UV LFs, UV-continuum slope trends with redshift and luminosity, and infrared excess (IRX)-? relations. They are well described by Schechter relations. We extend the comparison baseline for SFR functions to z ~ 2 by considering recent determinations of the H? and mid-IR LFs. The low-end slopes of the SFR functions are flatter than for the UV LFs, ?? ~ +0.13, and show no clear evolution with cosmic time (z ~ 0-7). In addition, we find that the characteristic value SFR* from the Schechter fit to the SFR function exhibits consistent, and substantial, linear growth as a function of redshift from ~5 M ? yr?1 at z ~ 8, 650?Myr after the big bang, to ~100 M ? yr?1 at z ~ 2, ~2.5 Gyr later. Recent results at z ~ 10, close to the onset of galaxy formation, are consistent with this trend. The uniformity of this evolution is even greater than seen in the UV LF over the redshift range z ~ 2-8, providing validation for our dust corrections. These results provide strong evidence that galaxies build up uniformly over the first 3?Gyr of cosmic time.