Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Stübi is active.

Publication


Featured researches published by R. Stübi.


Journal of Geophysical Research | 2012

Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites

Jennifer A. Logan; Johannes Staehelin; Inna A. Megretskaia; Jean-Pierre Cammas; V. Thouret; H. Claude; H. De Backer; Martin Steinbacher; H.-E. Scheel; R. Stübi; M. Fröhlich; R. G. Derwent

We use ozone observations from sondes, regular aircraft, and alpine surface sites in a self-consistent analysis to determine robust changes in the time evolution of ozone over Europe. The data are most coherent since 1998, with similar interannual variability and trends. Ozone has decreased slowly since 1998, with an annual mean trend of −0.15 ppb yr−1 at ∼3 km and the largest decrease in summer. There are some substantial differences between the sondes and other data, particularly in the early 1990s. The alpine and aircraft data show that ozone increased from late 1994 until 1998, but the sonde data do not. Time series of differences in ozone between pairs of locations reveal inconsistencies in various data sets. Differences as small as few ppb for 2-3 years lead to different trends for 1995-2008, when all data sets overlap. Sonde data from Hohenpeissenberg and in situ data from nearby Zugspitze show ozone increased by ∼1 ppb yr−1 during 1978-1989. We construct a mean alpine time series using data for Jungfraujoch, Zugspitze, and Sonnblick. Using Zugspitze data for 1978-1989, and the mean time series since 1990, we find that the ozone increased by 6.5-10 ppb in 1978-1989 and 2.5-4.5 ppb in the 1990s and decreased by 4 ppb in the 2000s in summer with no significant changes in other seasons. It is hard to reconcile all these changes with trends in emissions of ozone precursors, and in ozone in the lowermost stratosphere. We recommend data sets that are suitable for evaluation of model hindcasts.


Journal of Geophysical Research | 2007

Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements

Yibo Jiang; L. Froidevaux; Alyn Lambert; Nathaniel J. Livesey; William G. Read; J. W. Waters; Bojan Bojkov; Thierry Leblanc; I. S. McDermid; Sophie Godin-Beekmann; Mark J. Filipiak; R. S. Harwood; R. Fuller; W. H. Daffer; Brian J. Drouin; R. E. Cofield; D. T. Cuddy; R. F. Jarnot; B. W. Knosp; V. S. Perun; Michael J. Schwartz; W. V. Snyder; P. C. Stek; R. P. Thurstans; P. A. Wagner; M. Allaart; S. B. Andersen; G. E. Bodeker; B. Calpini; H. Claude

We present validation studies of MLS version 2.2 upper tropospheric and stratospheric ozone profiles using ozonesonde and lidar data as well as climatological data. Ozone measurements from over 60 ozonesonde stations worldwide and three lidar stations are compared with coincident MLS data. The MLS ozone stratospheric data between 150 and 3 hPa agree well with ozonesonde measurements, within 8% for the global average. MLS values at 215 hPa are biased high compared to ozonesondes by A`20% at middle to high latitude, although there is a lot of variability in this altitude region. Comparisons between MLS and ground-based lidar measurements from Mauna Loa, Hawaii, from the Table Mountain Facility, California, and from the Observatoire de Haute-Provence, France, give very good agreement, within A`5%, for the stratospheric values. The comparisons between MLS and the Table Mountain Facility tropospheric ozone lidar show that MLS data are biased high by A`30% at 215 hPa, consistent with that indicated by the ozonesonde data. We obtain better global average agreement between MLS and ozonesonde partial column values down to 215 hPa, although the average MLS values at low to middle latitudes are higher than the ozonesonde values by up to a few percent. MLS v2.2 ozone data agree better than the MLS v1.5 data with ozonesonde and lidar measurements. MLS tropical data show the wave one longitudinal pattern in the upper troposphere, with similarities to the average distribution from ozonesondes. High upper tropospheric ozone values are also observed by MLS in the tropical Pacific from June to November.


Journal of Geophysical Research | 2007

A trajectory-based estimate of the tropospheric ozone column using the residual method

Mark R. Schoeberl; J. R. Ziemke; B. Bojkov; Nathaniel J. Livesey; B. Duncan; Susan E. Strahan; L. Froidevaux; S. S. Kulawik; Pawan K. Bhartia; S. Chandra; Pieternel F. Levelt; Jacquelyn C. Witte; Anne M. Thompson; E. Cuevas; A. Redondas; David W. Tarasick; J. Davies; G. E. Bodeker; Georg Hansen; Bryan J. Johnson; Samuel J. Oltmans; H. Vömel; M. Allaart; H. Kelder; M. J. Newchurch; Sophie Godin-Beekmann; Gérard Ancellet; H. Claude; S. B. Andersen; E. Kyrö

We estimate the tropospheric column ozone using a forward trajectory model to increase the horizontal resolution of the Aura Microwave Limb Sounder (MLS) derived stratospheric column ozone. Subtracting the MLS stratospheric column from Ozone Monitoring Instrument total column measurements gives the trajectory enhanced tropospheric ozone residual (TTOR). Because of different tropopause definitions, we validate the basic residual technique by computing the 200-hPa-to-surface column and comparing it to the same product from ozonesondes and Tropospheric Emission Spectrometer measurements. Comparisons show good agreement in the tropics and reasonable agreement at middle latitudes, but there is a persistent low bias in the TTOR that may be due to a slight high bias in MLS stratospheric column. With the improved stratospheric column resolution, we note a strong correlation of extratropical tropospheric ozone column anomalies with probable troposphere-stratosphere exchange events or folds. The folds can be identified by their colocation with strong horizontal tropopause gradients. TTOR anomalies due to folds may be mistaken for pollution events since folds often occur in the Atlantic and Pacific pollution corridors. We also compare the 200-hPa-to-surface column with Global Modeling Initiative chemical model estimates of the same quantity. While the tropical comparisons are good, we note that chemical model variations in 200-hPa-to-surface column at middle latitudes are much smaller than seen in the TTOR.


Global Change Biology | 2016

Global impacts of the 1980s regime shift

Philip C. Reid; Renata E. Hari; Grégory Beaugrand; David M. Livingstone; Christoph Marty; Dietmar Straile; Jonathan Barichivich; Eric Goberville; Rita Adrian; Yasuyuki Aono; Ross Brown; James L. Foster; Pavel Ya. Groisman; Pierre Helaouët; Huang-Hsiung Hsu; Richard R. Kirby; Jeff R. Knight; Alexandra Kraberg; Jianping Li; Tzu-Ting Lo; Ranga B. Myneni; Ryan P. North; J. Alan Pounds; Tim H. Sparks; R. Stübi; Yongjun Tian; Karen Helen Wiltshire; Dong Xiao; Zaichun Zhu

Abstract Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change‐point analysis and a sequential t‐test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earths biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.


Journal of Geophysical Research | 2006

Comparison and validation of the aerosol optical depth obtained with the Langley plot method in the UV‐B from Brewer Ozone Spectrophotometer measurements

Anne Cheymol; Hugo De Backer; Weine Josefsson; R. Stübi

(1) The Aerosol Optical Depths (AODs) retrieved from Brewer Ozone Spectrophotometer measurements with a method previously developed (Cheymol and De Backer, 2003) are now validated by comparisons between AODs from six Brewer spectrophotometers and two CSEM SPM2000 sunphotometers: two Brewer spectrophotometers 016 and 178 at Uccle in Belgium; one Brewer spectrophotometer 128 and one sunphotometer CSEM SPM2000 at Norrkoping in Sweden; and three Brewer instruments 040, 072, 156 at Arosa and one CSEM SPM2000 sunphotometer at Davos in Switzerland. The comparison between AODs from Brewer spectrophotometer 128 at 320.1 nm and sunphotometer SPM2000 at 368 nm at Norrkoping shows that the AODs obtained from the Brewer measurements with the Langley Plot Method (LPM) are very accurate if the neutral density filter spectral transmittances are well known: with the measured values of these filters, the correlation coefficient, the slope, and the intercept of the regression line are 0.98, 0.85 ± 0.004, and 0.02 ± 0.0014, respectively. The bias observed is mainly owing to the wavelength difference between the two instruments. The comparison between AODs from different Brewer spectrophotometers confirm that AODs will be in very good agreement if they are measured with several Brewer instruments at the same place: At Uccle, the correlation coefficient, slope, and intercept of the regression line are 0.98, 1.02 ± 0.003, and 0.06 ± 0.001, respectively; at Arosa, the comparisons between the AODs from three Brewer spectrophotometers 040, 072, and 156 give a correlation coefficient, a slope, and an intercept of the regression line above 0.94, 0.98 and below 0.04, respectively.


Journal of Atmospheric and Oceanic Technology | 2003

Investigation of Systematic Uncertainties in Brewer-Mast Ozone Soundings Using Observations from a Ground-Based Microwave Radiometer

Yasmine Calisesi; R. Stübi; Niklaus Kämpfer; P. Viatte

Abstract The series of balloon-borne Brewer–Mast ozone soundings is one of the few datasets that allow the reconstruction of the history of stratospheric ozone decline over the last three decades. The reanalysis of these data goes along with the revision of the soundings operation procedure, which was first defined in the 1970s. The present study focuses on the normalization of the recorded profiles to total ozone. Independent microwave remote sensing data are used to investigate the influence of systematic ozonesonde measurement uncertainties on the computed normalization factors. The analysis shows that a significant underestimation of the ozonesonde readings compared to microwave data exists above 20 hPa (∼27 km). This suggests that the loss of the sonde pump efficiency with decreasing atmospheric pressure is only partially compensated by the standard correction applied for this effect. The shape of the constant volume mixing ratio extrapolation commonly used for residual ozone is, moreover, inconsiste...


Journal of Geophysical Research | 2017

First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998–2016): 2. Comparisons With Satellites and Ground‐Based Instruments

Anne M. Thompson; Jacquelyn C. Witte; Chance W. Sterling; Allen Jordan; Bryan J. Johnson; Samuel J. Oltmans; Masatomo Fujiwara; Holger Vömel; M. Allaart; Ankie Piters; Gert J. R. Coetzee; Françoise Posny; Ernesto Corrales; Jorge Andres Diaz; Christian Félix; Ninong Komala; Nga Lai; H. T. Ahn Nguyen; Matakite Maata; Francis S. Mani; Zamuna Zainal; Shin-Ya Ogino; Francisco Paredes; Tercio Luiz Bezerra Penha; Francisco R. da Silva; Sukarni Sallons‐Mitro; Henry B. Selkirk; Francis J. Schmidlin; R. Stübi; Kennedy Thiongo

Abstract The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.


Journal of Geophysical Research | 2018

First Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty in Ozone Profile and Total Column

Jacquelyn C. Witte; Anne M. Thompson; H. G. J. Smit; Holger Vömel; Françoise Posny; R. Stübi

Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for both profile and total column ozone (TCO). The ozone uncertainty is a composite of the uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those being the ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow-rate. Overall, PO3 uncertainties (ΔPO3) are within 15% and peak around the tropopause (15±3km) where ozone is a minimum and ΔPO3 approaches the measured signal. The uncertainty in the background and sensor currents dominate the overall ΔPO3 in the troposphere including the tropopause region, while the uncertainties in the conversion efficiency and flow-rate dominate in the stratosphere. Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the ozone residual uncertainty, derived from the McPeters and Labow [2012] 1-σ ozone mixing ratios. Overall, ΔTCO are within ±15 DU, representing ~5-6% of the TCO. TOMS and OMI satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity between TOMS v8.6 (1998-2004/09) and OMI (2004/10-2016) TCO on the order of 10DU that accounts for the significant 16DU overall difference observed between sonde and TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only ~4DU.


Meteorologische Zeitschrift | 2001

Wind profiler as a tool to check the ability of two NWP models to forecast winds above highly complex topography

Dominique Ruffieux; R. Stübi

Wind observations from a wind profiler located next to the crest of the Alps are used to test the ability of two Numerical Weather Prediction (NWP) models to forecast the air flow from the surface up to 3000 m above the complex topography. A statistical analysis of the Mesoscale Alpine Programme Special Observing Periods (MAP-SOP) data grouped into three main weather types is first presented. Then a foehn case study is used to illustrate the ability of NWP models to forecast strong wind events over the Alps.


Journal of Geophysical Research | 2007

Assessment of the performance of ECC‐ozonesondes under quasi‐flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE)

H. G. J. Smit; Wolfgang Straeter; Bryan J. Johnson; Samuel J. Oltmans; J. Davies; David W. Tarasick; Bruno Hoegger; R. Stübi; Francis J. Schmidlin; T. Northam; Anne M. Thompson; Jacquelyn C. Witte; I. S. Boyd; Françoise Posny

Collaboration


Dive into the R. Stübi's collaboration.

Top Co-Authors

Avatar

H. Claude

Deutscher Wetterdienst

View shared research outputs
Top Co-Authors

Avatar

Sophie Godin-Beekmann

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

J.-C. Lambert

Belgian Institute for Space Aeronomy

View shared research outputs
Top Co-Authors

Avatar

Anne M. Thompson

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

M. Allaart

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

H. De Backer

Royal Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

S. B. Andersen

Danish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Daan Hubert

Belgian Institute for Space Aeronomy

View shared research outputs
Top Co-Authors

Avatar

Arno Keppens

Belgian Institute for Space Aeronomy

View shared research outputs
Researchain Logo
Decentralizing Knowledge