Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Suzuki is active.

Publication


Featured researches published by R. Suzuki.


The Astrophysical Journal | 2013

Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

Masayuki Kuzuhara; Motohide Tamura; Tomoyuki Kudo; Markus Janson; Ryo Kandori; Timothy D. Brandt; Christian Thalmann; David S. Spiegel; Beth A. Biller; Yasunori Hori; R. Suzuki; Adam Burrows; T. Henning; Edwin L. Turner; M. W. McElwain; Amaya Moro-Martin; Takuya Suenaga; Yasuhiro H. Takahashi; Jungmi Kwon; P. W. Lucas; Lyu Abe; Wolfgang Brandner; Sebastian Egner; Markus Feldt; H. Fujiwara; Miwa Goto; C. A. Grady; Olivier Guyon; Jun Hashimoto; Yutaka Hayano

Several exoplanets have recently been imaged at wide separations of >10?AU from their parent stars. These span a limited range of ages ( 0.5?mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160?Myr, GJ 504b has an estimated mass of 4 Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5?AU exceeds the typical outer boundary of ~30?AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510 K) and has a bluer color (J ? H = ?0.23?mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.


The Astrophysical Journal | 2011

Direct Imaging of Fine Structures in Giant Planet Forming Regions of the Protoplanetary Disk around AB Aurigae

Jun Hashimoto; Motohide Tamura; Takayuki Muto; Tomoyuki Kudo; Misato Fukagawa; T. Fukue; M. Goto; C. A. Grady; T. Henning; Klaus-Werner Hodapp; Mitsuhiko Honda; Shu-ichiro Inutsuka; Eiichiro Kokubo; Gillian R. Knapp; Michael W. McElwain; Munetake Momose; Nagayoshi Ohashi; Yoshiko K. Okamoto; Michihiro Takami; Edwin L. Turner; John P. Wisniewski; Markus Janson; Lyu Abe; Wolfgang Brandner; Sebastian Egner; Markus Feldt; Taras Golota; Olivier Guyon; Yutaka Hayano; Masahiko Hayashi

We report high-resolution 1.6 μm polarized intensity (PI) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU (015) up to 554 AU (385), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part (140 AU) of the disk while confirming the previously reported outer (r 200 AU) spiral structure. We have imaged a double ring structure at ~40 and ~100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination angles between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is ~45 AU or less) within two rings, as well as three prominent PI peaks at ~40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit (r > 20 AU) planets.


The Astrophysical Journal | 2009

MOIRCS Deep Survey. IV. Evolution of Galaxy Stellar Mass Function Back to z ~ 3

Masaru Kajisawa; Takashi Ichikawa; Ichi Tanaka; Masahiro Konishi; Toru Yamada; Masayuki Akiyama; R. Suzuki; Chihiro Tokoku; Yuka Katsuno Uchimoto; Tomohiro Yoshikawa; Masami Ouchi; Ikuru Iwata; Takashi Hamana; M. Onodera

We use very deep near-infrared (NIR) imaging data obtained in MOIRCS Deep Survey (MODS) to investigate the evolution of the galaxy stellar mass function back to z ~ 3. The MODS data reach J = 24.2, H = 23.1, and K = 23.1 (5σ, Vega magnitude) over 103 arcmin2 (wide) and J = 25.1, H = 23.7, and K = 24.1 over 28 arcmin2 (deep) in the GOODS-North region. The wide and very deep NIR data allow us to measure the number density of galaxies down to low stellar mass (109-1010 M ☉) even at high redshift with high statistical accuracy. The normalization of the mass function decreases with redshift, and the integrated stellar mass density becomes ~8%-18% of the local value at z ~ 2 and ~4%-9% at z ~ 3, which are consistent with results of previous studies in general fields. Furthermore, we found that the low-mass slope becomes steeper with redshift from α ~ –1.3 at z ~ 1 to α ~ –1.6 at z ~ 3 and that the evolution of the number density of low-mass (109-1010 M ☉) galaxies is weaker than that of M* (~1011 M ☉) galaxies. This indicates that the contribution of low-mass galaxies to the total stellar mass density has been significant at high redshift. The steepening of the low-mass slope with redshift is an opposite trend expected from the stellar mass dependence of the specific star formation rate reported in previous studies. The present result suggests that the hierarchical merging process overwhelmed the effect of the stellar mass growth by star formation and was very important for the stellar mass assembly of these galaxies at 1 z 3.


The Astrophysical Journal | 2013

New Techniques for High-contrast Imaging with ADI: The ACORNS-ADI SEEDS Data Reduction Pipeline

Timothy D. Brandt; Michael W. McElwain; Edwin L. Turner; Lyu Abe; Wolfgang Brandner; Sebastian Egner; Markus Feldt; Taras Golota; Miwa Goto; C. A. Grady; Olivier Guyon; Jun Hashimoto; Yutaka Hayano; Masahiko Hayashi; S. Hayashi; T. Henning; Klaus-Werner Hodapp; Miki Ishii; Masanori Iye; Markus Janson; Ryo Kandori; Gillian R. Knapp; Tomoyuki Kudo; Nobuhiko Kusakabe; Masayuki Kuzuhara; Jungmi Kwon; Takashi Matsuo; Shoken M. Miyama; J.-I. Morino; Amaya Moro-Martin

We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to ~20%, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field of view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a Berkeley Software Distribution (BSD) license.


Astronomy and Astrophysics | 2014

Characterization of the gaseous companion κ Andromedae b - New Keck and LBTI high-contrast observations

M. Bonnefoy; Thayne Currie; G.-D. Marleau; Joshua E. Schlieder; John P. Wisniewski; K. R. Covey; T. Henning; Beth A. Biller; P. Hinz; Hubert Klahr; A. N. Marsh Boyer; Neil Zimmerman; Markus Janson; M. W. McElwain; Christoph Mordasini; A. Skemer; Vanessa P. Bailey; Denis Defrere; Christian Thalmann; M. Skrutskie; F. Allard; Derek Homeier; Motohide Tamura; Markus Feldt; Andrew Cumming; C. A. Grady; Wolfgang Brandner; Christiane Helling; S. Witte; Peter H. Hauschildt

Context. We previously reported the direct detection of a low mass companion at a projected separation of 55 2 AU around the B9 type star Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for the understanding of the formation and evolution of gas giant planets and brown dwarfs on wide-orbits. Aims. We present new angular di erential imaging (ADI) images of the system at 2.146 (Ks), 3.776 (L’), 4.052 (NB 4:05) and 4.78 m (M’) obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We aim to determine the near-infrared spectral energy distribution (SED) of the companion and use it to characterize the object. Methods. We used analysis methods adapted to ADI to extract the companion flux. We compared the photometry of the object to reference young/old objects and to a set of seven PHOENIX-based atmospheric models of cool objects accounting for the formation of dust. We used evolutionary models to derive mass estimates considering a wide range of plausible initial conditions. Finally, we used dedicated formation models to discuss the possible origin of the companion. Results. We derive a more accurate J = 15:86 0:21, H = 14:95 0:13, Ks = 14:32 0:09 mag for And b. We redetect the companion in all our high contrast observations. We confirm previous contrasts obtained at Ks and L’ band. We derive NB 4:05 = 13:0 0:2 and M 0 = 13:3 0:3 mag and estimate Log10(L=L ) = 3:76 0:06. Atmospheric models yield Te = 1900 +100 K. They do not set constrains on the surface gravity. “Hot-start” evolutionary models predict masses of 14 +25 MJup based on the luminosity and temperature estimates, and considering a conservative age range for the system (30 +120 Myr). “warm-start” evolutionary tracks constrain the mass to M 11MJup. Conclusions. The mass of Andromedae b mostly falls in the brown-dwarf regime, due to remaining uncertainties in age and mass-luminosity models. According to the formation models, disk instability in a primordial disk could account for the position and a wide range of plausible masses of And b.


The Astrophysical Journal | 2013

The formation of the massive galaxies in the SSA22 z = 3.1 protocluster

Mariko Kubo; Yuka Katsuno Uchimoto; Toru Yamada; Masaru Kajisawa; Takashi Ichikawa; Y. Matsuda; Masayuki Akiyama; Tomoki Hayashino; Masahiro Konishi; Tetsuo Nishimura; Koji Omata; R. Suzuki; Ichi Tanaka; Tomohiro Yoshikawa; D. M. Alexander; Giovanni G. Fazio; Jia-Sheng Huang; B. D. Lehmer

We study the properties of K-band-selected galaxies (K AB 1011 M ☉ at z phot ~ 3.1 have colors consistent with those of quiescent galaxies with ages >0.5 Gyr. This fraction increases to ≈50% after correcting for unrelated foreground/background objects. We also find that 30% of the massive galaxies are heavily reddened, dusty, star-forming galaxies. Few such quiescent galaxies at similar redshifts are seen in typical survey fields. An excess surface density of 24 μm sources at z phot ~ 3.1 is also observed, implying the presence of dusty star-formation activity in the protocluster. Cross-correlation with the X-ray data indicates that the fraction of K-band-selected protocluster galaxies hosting active galactic nuclei (AGNs) is also high compared with the field. The sky distribution of the quiescent galaxies, the 24 μm sources, and the X-ray AGNs show clustering around a density peak of z = 3.1 Lyα emitters. A significant fraction of the massive galaxies have already become quiescent, while dusty star-formation is still active in the SSA22 protocluster. These findings indicate that we are witnessing the formation epoch of massive early-type galaxies in the centers of the predecessors to present-day rich galaxy clusters.


The Astrophysical Journal | 2009

Moircs Deep Survey. III. Active Galactic Nuclei in Massive Galaxies at z = 2-4

Toru Yamada; Masaru Kajisawa; Masayuki Akiyama; Takashi Ichikawa; Masahiro Konishi; Tetsuo Nishimura; Koji Omata; R. Suzuki; Ichi Tanaka; Chihiro Tokoku; Yuka Katsuno Uchimoto; Tomohiro Yoshikawa

We investigate the X-ray properties of the K-band-selected galaxies at redshift 2 < z < 4 by using our deep near-infrared images obtained in the Multi-Object Infrared Camera and Spectrograph Deep Survey project and the published Chandra X-ray source catalog. Sixty-one X-ray sources with the 2-10 keV luminosity L{sub X} = 10{sup 42}-10{sup 44} erg s{sup -1} are identified with the K-selected galaxies and we found that they are exclusively (90%) associated with the massive objects with a stellar mass larger than 10{sup 10.5} M{sub sun}. Our results are consistent with the idea that the M {sub BH}/M{sub str} ratio of the galaxies at z = 2-4 is similar to the present-day value. On the other hand, the active galactic nucleus (AGN) detection rate among the very massive galaxies with a stellar mass larger than 10{sup 11} M{sub sun} is high, 33% (26/78). They are active objects in the sense that the black hole mass accretion rate is {approx}1%-50% of the Eddington limit if they indeed have similar M {sub BH}/M {sub str} ratio with those observed in the local universe. The active duration in the AGN duty cycle of the high-redshift massive galaxies seems large.


Proceedings of SPIE | 2012

Infrared Doppler instrument for the Subaru Telescope (IRD)

Motohide Tamura; H. Suto; Jun Nishikawa; Takayuki Kotani; Bun’ei Sato; Wako Aoki; Tomonori Usuda; Takashi Kurokawa; Ken Kashiwagi; Shogo Nishiyama; Yuji Ikeda; D. Hall; Klaus W. Hodapp; Jun Hashimoto; J.-I. Morino; Sadahiro Inoue; Yosuke Mizuno; Yo Washizaki; Yoichi Tanaka; Shota Suzuki; Jungmi Kwon; Takuya Suenaga; Dehyun Oh; Norio Narita; Eiichiro Kokubo; Yutaka Hayano; Hideyuki Izumiura; Eiji Kambe; Tomoyuki Kudo; Nobuhiko Kusakabe

Because of their large numbers, red dwarfs may be the most abundant planet hosts in our Galaxy. In order to detect Earth-like planets around nearby red dwarfs (in particular late-M stars), it is crucial to conduct the precise radial velocity (RV) measurements at near-infrared wavelengths where these stars emit most of light. We report the development of the Infrared Doppler (IRD) spectrometer for the Subaru telescope. IRD is a fiber-fed, high-precision, near infrared spectrometer with a spectral resolution of R~70,000 covering from 0.97 to 1.75 μm. To achieve 1m/s RV measurement precision, we employ our original laser frequency comb of a wide-wavelength coverage as an extremely stable wavelength standard in the near-infrared. The spectrometer optics is composed of a new wide-pitch Echelle-grating and Volume-Phase Holographic gratings. To achieve ultimate thermal stability, very low thermal expansion ceramic is used for most of the optical components including the optical bench. The spectrometer will utilize a 4096×4096-pixel HgCdTe array.


The Astrophysical Journal | 2015

The Structure of Pre-transitional Protoplanetary Disks. II. Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

Jun Hashimoto; Takashi Tsukagoshi; Joanna M. Brown; Ruobing Dong; Takayuki Muto; Zhaohuan Zhu; John P. Wisniewski; Nagayoshi Ohashi; Tomoyuki Kudo; Nobuhiko Kusakabe; Lyu Abe; Eiji Akiyama; Wolfgang Brandner; Timothy D. Brandt; Thayne Currie; Sebastian Egner; Markus Feldt; C. A. Grady; Olivier Guyon; Yutaka Hayano; Masahiko Hayashi; S. Hayashi; Thomas Henning; Klaus-Werner Hodapp; Miki Ishii; Masanori Iye; Markus Janson; Ryo Kandori; Gillian R. Knapp; Masayuki Kuzuhara

The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-µm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report SMA observations of the dust continuum at 1.3 mm and 12 CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust-disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap-radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration. Subject headings: planetary systems — protoplanetary disks — stars: individual (PDS 70) — stars: pre-main sequence — submillimeter: general — polarization


The Astrophysical Journal | 2017

SCExAO AND GPI Y JH BAND PHOTOMETRY AND INTEGRAL FIELD SPECTROSCOPY OF THE YOUNG BROWN DWARF COMPANION TO HD 1160

E. Victor Garcia; Thayne Currie; Olivier Guyon; Keivan G. Stassun; Nemanja Jovanovic; Julien Lozi; Tomoyuki Kudo; Danielle Doughty; Josh Schlieder; Jungmi Kwon; Taichi Uyama; Masayuki Kuzuhara; Takao Nakagawa; Jun Hashimoto; Nobuhiko Kusakabe; Lyu Abe; Wolfgang Brandner; Timothy D. Brandt; Markus Feldt; Miwa Goto; C. A. Grady; Yutaka Hayano; Masahiko Hayashi; S. Hayashi; T. Henning; Klaus-Werner Hodapp; Miki Ishii; Masanori Iye; Markus Janson; Ryo Kandori

BF foundation; Fisk-Vanderbilt Bridge Program; JSPS [23103002, 23340051, 26220704, 25-8826]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-701012-DRAFT]; U.S. National Science Foundation [1009203]

Collaboration


Dive into the R. Suzuki's collaboration.

Top Co-Authors

Avatar

C. A. Grady

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Lyu Abe

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy D. Brandt

Institute for Advanced Study

View shared research outputs
Top Co-Authors

Avatar

Tomoyuki Kudo

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge