Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Thane Papke is active.

Publication


Featured researches published by R. Thane Papke.


FEMS Microbiology Ecology | 2004

The importance of physical isolation to microbial diversification.

R. Thane Papke; David M. Ward

The importance of physical isolation, defined as the spatial separation of two or more populations, to the evolution of organisms has been well studied in plants and animals yet its significance regarding microbial evolution has not been fully appreciated. Here we review the theoretical paradigm of physical isolation for the diversification of organisms in general and then provide a variety of evidence indicating that microbial populations also fit into a similar evolutionary framework.


Scientific Reports | 2011

New Abundant Microbial Groups in Aquatic Hypersaline Environments

Rohit Ghai; Lejla Pašić; Ana Beatriz Fernández; Ana-Belen Martin-Cuadrado; Carolina Megumi Mizuno; Katherine D. McMahon; R. Thane Papke; Ramunas Stepanauskas; Beltran Rodriguez-Brito; Forest Rohwer; Cristina Sánchez-Porro; Antonio Ventosa; Francisco Rodriguez-Valera

We describe the microbiota of two hypersaline saltern ponds, one of intermediate salinity (19%) and a NaCl saturated crystallizer pond (37%) using pyrosequencing. The analyses of these metagenomes (nearly 784 Mb) reaffirmed the vast dominance of Haloquadratum walsbyi but also revealed novel, abundant and previously unsuspected microbial groups. We describe for the first time, a group of low GC Actinobacteria, related to freshwater Actinobacteria, abundant in low and intermediate salinities. Metagenomic assembly revealed three new abundant microbes: a low-GC euryarchaeon with the lowest GC content described for any euryarchaeon, a high-GC euryarchaeon and a gammaproteobacterium related to Alkalilimnicola and Nitrococcus. Multiple displacement amplification and sequencing of the genome from a single archaeal cell of the new low GC euryarchaeon suggest a photoheterotrophic and polysaccharide-degrading lifestyle and its relatedness to the recently described lineage of Nanohaloarchaea. These discoveries reveal the combined power of an unbiased metagenomic and single cell genomic approach.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Searching for species in haloarchaea

R. Thane Papke; Olga Zhaxybayeva; Edward J. Feil; Katrin Sommerfeld; Denise Muise; W. Ford Doolittle

Prokaryotic (bacterial and archaeal) species definitions and the biological concepts that underpin them entail clustering (cohesion) among individuals, in terms of genome content and gene sequence similarity. Homologous recombination can maintain gene sequence similarity within, while permitting divergence between, clusters and is thus the basis for recent efforts to apply the Biological Species Concept in prokaryote systematics and ecology. In this study, we examine isolates of the haloarchaeal genus Halorubrum from two adjacent ponds of different salinities at a Spanish saltern and a natural saline lake in Algeria by using multilocus sequence analysis. We show that, although clusters can be defined by concatenation of multiple marker sequences, barriers to exchange between them are leaky. We suggest that no nonarbitrary way to circumscribe “species” is likely to emerge for this group, or by extension, to apply generally across prokaryotes. Arbitrary criteria might have limited practical use, but still must be agreed upon by the community.


Genome Biology and Evolution | 2009

Intertwined Evolutionary Histories of Marine Synechococcus and Prochlorococcus marinus

Olga Zhaxybayeva; W. Ford Doolittle; R. Thane Papke; J. Peter Gogarten

Prochlorococcus is a genus of marine cyanobacteria characterized by small cell and genome size, an evolutionary trend toward low GC content, the possession of chlorophyll b, and the absence of phycobilisomes. Whereas many shared derived characters define Prochlorococcus as a clade, many genome-based analyses recover them as paraphyletic, with some low-light adapted Prochlorococcus spp. grouping with marine Synechococcus. Here, we use 18 Prochlorococcus and marine Synechococcus genomes to analyze gene flow within and between these taxa. We introduce embedded quartet scatter plots as a tool to screen for genes whose phylogeny agrees or conflicts with the plurality phylogenetic signal, with accepted taxonomy and naming, with GC content, and with the ecological adaptation to high and low light intensities. We find that most gene families support high-light adapted Prochlorococcus spp. as a monophyletic clade and low-light adapted Prochlorococcus sp. as a paraphyletic group. But we also detect 16 gene families that were transferred between high-light adapted and low-light adapted Prochlorococcus sp. and 495 gene families, including 19 ribosomal proteins, that do not cluster designated Prochlorococcus and Synechococcus strains in the expected manner. To explain the observed data, we propose that frequent gene transfer between marine Synechococcus spp. and low-light adapted Prochlorococcus spp. has created a “highway of gene sharing” (Beiko RG, Harlow TJ, Ragan MA. 2005. Highways of gene sharing in prokaryotes. Proc Natl Acad Sci USA. 102:14332–14337) that tends to erode genus boundaries without erasing the Prochlorococcus-specific ecological adaptations.


Current Opinion in Microbiology | 2015

Microbial diversity of hypersaline environments: a metagenomic approach.

Antonio Ventosa; Rafael R. de la Haba; Cristina Sánchez-Porro; R. Thane Papke

Recent studies based on metagenomics and other molecular techniques have permitted a detailed knowledge of the microbial diversity and metabolic activities of microorganisms in hypersaline environments. The current accepted model of community structure in hypersaline environments is that the square archaeon Haloquadratum waslbyi, the bacteroidete Salinibacter ruber and nanohaloarchaea are predominant members at higher salt concentrations, while more diverse archaeal and bacterial taxa are observed in habitats with intermediate salinities. Additionally, metagenomic studies may provide insight into the isolation and characterization of the principal microbes in these habitats, such as the recently described gammaproteobacterium Spiribacter salinus.


BMC Biology | 2014

Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer

Scott Chimileski; Michael J. Franklin; R. Thane Papke

BackgroundArchaea share a similar microbial lifestyle with bacteria, and not surprisingly then, also exist within matrix-enclosed communities known as biofilms. Advances in biofilm biology have been made over decades for model bacterial species, and include characterizations of social behaviors and cellular differentiation during biofilm development. Like bacteria, archaea impact ecological and biogeochemical systems. However, the biology of archaeal biofilms is only now being explored. Here, we investigated the development, composition and dynamics of biofilms formed by the haloarchaeon Haloferax volcanii DS2.ResultsBiofilms were cultured in static liquid and visualized with fluorescent cell membrane dyes and by engineering cells to express green fluorescent protein (GFP). Analysis by confocal scanning laser microscopy showed that H. volcanii cells formed microcolonies within 24 h, which developed into larger clusters by 48 h and matured into flake-like towers often greater than 100 μm in height after 7 days. To visualize the extracellular matrix, biofilms formed by GFP-expressing cells were stained with concanavalin A, DAPI, Congo red and thioflavin T. Stains colocalized with larger cellular structures and indicated that the extracellular matrix may contain a combination of polysaccharides, extracellular DNA and amyloid protein. Following a switch to biofilm growth conditions, a sub-population of cells differentiated into chains of long rods sometimes exceeding 25 μm in length, compared to their planktonic disk-shaped morphology. Time-lapse photography of static liquid biofilms also revealed wave-like social motility. Finally, we quantified gene exchange between biofilm cells, and found that it was equivalent to the mating frequency of a classic filter-based experimental method.ConclusionsThe developmental processes, functional properties and dynamics of H. volcanii biofilms provide insight on how haloarchaeal species might persist, interact and exchange DNA in natural communities. H. volcanii demonstrates some biofilm phenotypes similar to bacterial biofilms, but also has interesting phenotypes that may be unique to this organism or to this class of organisms, including changes in cellular morphology and an unusual form of social motility. Because H. volcanii has one of the most advanced genetic systems for any archaeon, the phenotypes reported here may promote the study of genetic and developmental processes in archaeal biofilms.


PLOS ONE | 2014

DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival.

Karolin Zerulla; Scott Chimileski; Daniela J. Näther; Uri Gophna; R. Thane Papke; Jörg Soppa

Haloferax volcanii uses extracellular DNA as a source for carbon, nitrogen, and phosphorous. However, it can also grow to a limited extend in the absence of added phosphorous, indicating that it contains an intracellular phosphate storage molecule. As Hfx. volcanii is polyploid, it was investigated whether DNA might be used as storage polymer, in addition to its role as genetic material. It could be verified that during phosphate starvation cells multiply by distributing as well as by degrading their chromosomes. In contrast, the number of ribosomes stayed constant, revealing that ribosomes are distributed to descendant cells, but not degraded. These results suggest that the phosphate of phosphate-containing biomolecules (other than DNA and RNA) originates from that stored in DNA, not in rRNA. Adding phosphate to chromosome depleted cells rapidly restores polyploidy. Quantification of desiccation survival of cells with different ploidy levels showed that under phosphate starvation Hfx. volcanii diminishes genetic advantages of polyploidy in favor of cell multiplication. The consequences of the usage of genomic DNA as phosphate storage polymer are discussed as well as the hypothesis that DNA might have initially evolved in evolution as a storage polymer, and the various genetic benefits evolved later.


Frontiers in Microbiology | 2014

Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach

Ana Beatriz Fernández; Blanca Vera-Gargallo; Cristina Sánchez-Porro; Rohit Ghai; R. Thane Papke; Francisco Rodriguez-Valera; Antonio Ventosa

We analyzed the prokaryotic community structure of a saltern pond with 21% total salts located in Isla Cristina, Huelva, Southwest Spain, close to the Atlantic ocean coast. For this purpose, we constructed a metagenome (designated as IC21) obtained by pyrosequencing consisting of 486 Mb with an average read length of 397 bp and compared it with other metagenomic datasets obtained from ponds with 19, 33, and 37% total salts acquired from Santa Pola marine saltern, located in Alicante, East Spain, on the Mediterranean coast. Although the salinity in IC21 is closer to the pond with 19% total salts from Santa Pola saltern (designated as SS19), IC21 is more similar at higher taxonomic levels to the pond with 33% total salts from Santa Pola saltern (designated as SS33), since both are predominated by the phylum Euryarchaeota. However, there are significant differences at lower taxonomic levels where most sequences were related to the genus Halorubrum in IC21 and to Haloquadratum in SS33. Within the Bacteroidetes, the genus Psychroflexus is the most abundant in IC21 while Salinibacter dominates in SS33. Sequences related to bacteriorhodopsins and halorhodopsins correlate with the abundance of Haloquadratum in Santa Pola SS19 to SS33 and of Halorubrum in Isla Cristina IC21 dataset, respectively. Differences in composition might be attributed to local ecological conditions since IC21 showed a decrease in the number of sequences related to the synthesis of compatible solutes and in the utilization of phosphonate.


Genome Biology and Evolution | 2012

Quantifying Homologous Replacement of Loci between Haloarchaeal Species

David Williams; J. Peter Gogarten; R. Thane Papke

In vitro studies of the haloarchaeal genus Haloferax have demonstrated their ability to frequently exchange DNA between species, whereas rates of homologous recombination estimated from natural populations in the genus Halorubrum are high enough to maintain random association of alleles between five loci. To quantify the effects of gene transfer and recombination of commonly held (relaxed core) genes during the evolution of the class Halobacteria (haloarchaea), we reconstructed the history of 21 genomes representing all major groups. Using a novel algorithm and a concatenated ribosomal protein phylogeny as a reference, we created a directed horizontal genetic transfer (HGT) network of contemporary and ancestral genomes. Gene order analysis revealed that 90% of testable HGTs were by direct homologous replacement, rather than nonhomologous integration followed by a loss. Network analysis revealed an inverse log-linear relationship between HGT frequency and ribosomal protein evolutionary distance that is maintained across the deepest divergences in Halobacteria. We use this mathematical relationship to estimate the total transfers and amino acid substitutions delivered by HGTs in each genome, providing a measure of chimerism. For the relaxed core genes of each genome, we conservatively estimate that 11–20% of their evolution occurred in other haloarchaea. Our findings are unexpected, because the transfer and homologous recombination of relaxed core genes between members of the class Halobacteria disrupts the coevolution of genes; however, the generation of new combinations of divergent but functionally related genes may lead to adaptive phenotypes not available through cumulative mutations and recombination within a single population.


Science | 2012

How Bacterial Lineages Emerge

R. Thane Papke; J. Peter Gogarten

Bacterial speciation is driven by interplay between natural selection, genetic linkage, and lateral gene transfer. Most people today recognize bacterial names like Escherichia coli and Neisseria meningitidis. Yet, from an evolutionary viewpoint, the clarity of species labels for bacteria is blurred by rampant horizontal gene transfer between bacteria (1). The forces driving speciation in bacteria include niche adaptation, selective sweeps, genetic drift, recombination of genetic material, and geographic isolation. How do those forces maintain species homogeneity or bring about lineages, when gene swapping is apparently so rife?

Collaboration


Dive into the R. Thane Papke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge