R. Thomas Boyd
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Thomas Boyd.
Psychopharmacology | 2007
Shannon G. Matta; David J.K. Balfour; Neal L. Benowitz; R. Thomas Boyd; Jerry J. Buccafusco; Anthony R. Caggiula; Caroline R. Craig; Allan C. Collins; M. Imad Damaj; Eric C. Donny; Phillip S. Gardiner; Sharon R. Grady; Ulrike Heberlein; Sherry Leonard; Edward D. Levin; Ronald J. Lukas; Athina Markou; Michael J. Marks; Sarah E. McCallum; Neeraja Parameswaran; Kenneth A. Perkins; Marina R. Picciotto; Maryka Quik; Jed E. Rose; Adrian Rothenfluh; William R. Schafer; Ian P. Stolerman; Rachel F. Tyndale; Jeanne M. Wehner; Jeffrey M. Zirger
RationaleThis review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure.ObjectivesThis review capitalizes on the authors’ collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models.ResultsSeven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses.ConclusionsThe selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose–response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.
Journal of Immunology | 2007
Seddigheh Razani-Boroujerdi; R. Thomas Boyd; Martha I. Dávila-García; Jayashree S. Nandi; Neerad C. Mishra; Shashi P. Singh; Juan Carlos Peña-Philippides; Raymond J. Langley; Mohan L. Sopori
Acute and chronic effects of nicotine on the immune system are usually opposite; acute treatment stimulates while chronic nicotine suppresses immune and inflammatory responses. Nicotine acutely raises intracellular calcium ([Ca2+]i) in T cells, but the mechanism of this response is unclear. Nicotinic acetylcholine receptors (nAChRs) are present on neuronal and non-neuronal cells, but while in neurons, nAChRs are cation channels that participate in neurotransmission; their structure and function in nonexcitable cells are not well-defined. In this communication, we present evidence that T cells express α7-nAChRs that are critical in increasing [Ca2+]i in response to nicotine. Cloning and sequencing of the receptor from human T cells showed a full-length transcript essentially identical to the neuronal α7-nAChR subunit (>99.6% homology). These receptors are up-regulated and tyrosine phosphorylated by treatment with nicotine, anti-TCR Abs, or Con A. Furthermore, knockdown of the α7-nAChR subunit mRNA by RNA interference reduced the nicotine-induced Ca2+ response, but unlike the neuronal receptor, α-bungarotoxin and methyllycaconitine not only failed to block, but also actually raised [Ca2+]i in T cells. The nicotine-induced release of Ca2+ from intracellular stores in T cells did not require extracellular Ca2+, but, similar to the TCR-mediated Ca2+ response, required activation of protein tyrosine kinases, a functional TCR/CD3 complex, and leukocyte-specific tyrosine kinase. Moreover, CD3ζ and α7-nAChR coimmunoprecipitated with anti-CD3ζ or anti-α7-nAChR Abs. These results suggest that in T cells, α7-nAChR, despite its close sequence homology with neuronal α7-nAChR, fails to form a ligand-gated Ca2+ channel, and that the nicotine-induced rise in [Ca2+]i in T cells requires functional TCR/CD3 and leukocyte-specific tyrosine kinase.
Gene Expression Patterns | 2003
Jeffrey M. Zirger; Christine E. Beattie; Dennis B. McKay; R. Thomas Boyd
We propose to use the zebrafish (Danio rerio) as a vertebrate model to study the role of neuronal nicotinic acetylcholine receptors (nAChR) in development. As a first step toward using zebrafish as a model, we cloned three zebrafish cDNAs with a high degree of sequence similarity to nAChR beta3, alpha2 and alpha7 subunits expressed in other species. RT-PCR was used to show that the beta3 and alpha2 subunit RNAs were present in zebrafish embryos only 2-5hours post-fertilization (hpf) while alpha7 subunit RNA was not detected until 8hpf, supporting the differential regulation of nAChRs during development. In situ hybridization was used to localize zebrafish beta3, alpha2, and alpha7 RNA expression. nAChR binding techniques were used to detect the early expression of two high-affinity [3H]-epibatidine binding sites in 2 days post-fertilization (dpf) zebrafish embryos with IC(50) values of 28.6pM and 29.7nM and in 5dpf embryos with IC(50) values of 28.4pM and 8.9nM. These studies are consistent with the involvement of neuronal nAChRs in early zebrafish development.
Journal of Immunology | 2010
Neerad C. Mishra; R. Thomas Boyd; Shashi P. Singh; Sravanthi Gundavarapu; Raymond J. Langley; Seddigheh Razani-Boroujerdi; Mohan L. Sopori
Smokers are less likely to develop some inflammatory and allergic diseases. In Brown-Norway rats, nicotine inhibits several parameters of allergic asthma, including the production of Th2 cytokines and the cysteinyl leukotriene LTC4. Cysteinyl leukotrienes are primarily produced by mast cells, and these cells play a central role in allergic asthma. Mast cells express a high-affinity receptor for IgE (FcεRI). Following its cross-linking, cells degranulate and release preformed inflammatory mediators (early phase) and synthesize and secrete cytokines/chemokines and leukotrienes (late phase). The mechanism by which nicotine modulates mast cell activation is unclear. Using α-bungarotoxin binding and quantitative PCR and PCR product sequencing, we showed that the rat mast/basophil cell line RBL-2H3 expresses nicotinic acetylcholine receptors (nAChRs) α7, α9, and α10; exposure to exceedingly low concentrations of nicotine (nanomolar), but not the biologically inactive metabolite cotinine, for ≥8 h suppressed the late phase (leukotriene/cytokine production) but not degranulation (histamine and hexosaminidase release). These effects were unrelated to those of nicotine on intracellular free calcium concentration but were causally associated with the inhibition of cytosolic phospholipase A2 activity and the PI3K/ERK/NF-κB pathway, including phosphorylation of Akt and ERK and nuclear translocation of NF-κB. The suppressive effect of nicotine on the late-phase response was blocked by the α7/α9-nAChR antagonists methyllycaconitine and α-bungarotoxin, as well as by small interfering RNA knockdown of α7-, α9-, or α10-nAChRs, suggesting a functional interaction between α7-, α9-, and α10-nAChRs that might explain the response of RBL cells to nanomolar concentrations of nicotine. This “hybrid” receptor might serve as a target for novel antiallergic/antiasthmatic therapies.
Molecular and Cellular Endocrinology | 1996
John J. Enyeart; R. Thomas Boyd; Judith A. Enyeart
NGFI-B and Ad4BP are steroid hormone receptor-like transcription factor that may control steroidogenesis, growth and differentiation in the adrenal cortex. We have studied the induction of NGFI-B and Ad4BP and mRNAs by the peptide hormones, ACTH, AII, IGF, FGF, and by KCl depolarization in cultured bovine adrenocortical cells. The mRNAs for these two transcription factors were most effectively but differentially induced by ACTH and AII. mRNA for NGFI-B was typically undetectable in unstimulated cells, but rapidly (< 30 min) accumulated in response to ACTH and AII. Peak increases occurred within 2-3 h after which mRNA levels declined. At maximally effective concentrations, AII produced increases in NGFI-B mRNA 2.7-fold larger than those triggered by ACTH (n = 7). In contrast to NGFI-B, Ad4BP mRNA was readily detectable in unstimulated cells. ACTH and AII induced smaller, slower and more sustained increases in Ad4BP mRNA. Peak values were obtained in 6-8 h and Ad4BP mRNA remained elevated for at least 18 h. ACTH produced increases in Ad4BP that were 2.6-fold larger than those stimulated by AII (n = 8). Antagonists of major signaling pathways that couple ACTH and AII receptors to cortisol secretion, including T-type Ca2+ antagonist Ni2+ and penfluridol, the CaM kinase antagonist KN-62, the A-kinase antagonist H-89 and the non-selective kinase antagonist staurosporine, all failed to suppress increases in NGFI-B and Ad4BP mRNAs triggered by these two peptides. Each of these agents effectively inhibited cortisol production stimulated by the peptides. Further, arguing against their proposed role as transcription factors for steroidogenic enzymes, ACTH- and AII-stimulated increases in steroid orphan receptor mRNAs were not correlated with corresponding increases in cortisol production measured over 24 h. The results show that NGFI-B and Ad4BP mRNAs are differentially regulated by ACTH and AII. Only NGFI-B is rapidly and transiently increased with kinetics common to immediate early genes. The lack of correlation between peptide-stimulated increases in orphan receptor mRNAs and cortisol production in combination with the apparent divergence in the associated signaling pathways argue against a primary role for these transcription factors in ACTH- and AII-stimulated steroidogenesis. The dual function of these peptide hormones as mediators of development and corticosteroid synthesis could necessitate the presence of separate, parallel signaling pathways.
Journal of Pharmacology and Experimental Therapeutics | 2010
Brandon J. Henderson; Ryan E. Pavlovicz; Jerad D. Allen; Tatiana F. González-Cestari; Crina M. Orac; Andrew B. Bonnell; Michael X. Zhu; R. Thomas Boyd; Chenglong Li; Stephen C. Bergmeier; Dennis B. McKay
Allosteric modulation of neuronal nicotinic acetylcholine receptors (nAChRs) is considered to be one of the most promising approaches for therapeutics. We have previously reported on the pharmacological activity of several compounds that act as negative allosteric modulators (NAMs) of nAChRs. In the following studies, the effects of 30 NAMs from our small chemical library on both human α4β2 (Hα4β2) and human α3β4 (Hα3β4) nAChRs expressed in human embryonic kidney ts201 cells were investigated. During calcium accumulation assays, these NAMs inhibited nAChR activation with IC50 values ranging from 2.4 μM to more than 100 μM. Several NAMs showed relative selectivity for Hα4β2 nAChRs with IC50 values in the low micromolar range. A lead molecule, KAB-18, was identified that shows relative selectivity for Hα4β2 nAChRs. This molecule contains three phenyl rings, one piperidine ring, and one ester bond linkage. Structure–activity relationship (SAR) analyses of our data revealed three regions of KAB-18 that contribute to its relative selectivity. Predictive three-dimensional quantitative SAR (comparative molecular field analysis and comparative molecular similarity indices analysis) models were generated from these data, and a pharmacophore model was constructed to determine the chemical features that are important for biological activity. Using docking approaches and molecular dynamics on a Hα4β2 nAChR homology model, a binding mode for KAB-18 at the α/β subunit interface that corresponds to the predicted pharmacophore is described. This binding mode was supported by mutagenesis studies. In summary, these studies highlight the importance of SAR, computational, and molecular biology approaches for the design and synthesis of potent and selective antagonists targeting specific nAChR subtypes.
Biochemical Pharmacology | 2012
Roger L. Papke; Fumihito Ono; Clare Stokes; Jason M. Urban; R. Thomas Boyd
Zebrafish (Danio rerio) have been used to study multiple effects of nicotine, for example on cognition, locomotion, and stress responses, relying on the assumption that pharmacological tools will operate similarly upon molecular substrates in the fish and mammalian systems. We have cloned the zebrafish nicotinic acetylcholine receptor (nAChR) subunits and expressed key nAChR subtypes in Xenopus oocytes including neuronal (α4β2, α2β2, α3β4, and α7) and muscle (α1β1(b)ɛδ) nAChR. Consistent with studies of mammalian nAChR, nicotine was relatively inactive on muscle-type receptors, having both low potency and efficacy. It had high efficacy but low potency for α7 receptors, and the best potency and good efficacy for α4β2 receptors. Cytisine, a key lead compound for the development of smoking cessation agents, is a full agonist for both mammalian α7 and α3β4 receptors, but a full agonist only for the fish α7, with surprisingly low efficacy for α3β4. The efficacy of cytisine for α4β2 was somewhat greater than typically reported for mammalian α4β2. The ganglionic blocker mecamylamine was most potent for blocking α3β4 receptors, least potent for α7, and roughly equipotent for the muscle receptors and the β2-containing nAChR. However, the block of β2-containing receptors was slowly reversible, consistent with effective targeting of these CNS-type receptors in vivo. Three prototypical α7-selective agonists, choline, tropane, and 4OH-GTS-21, were tested, and these agents were observed to activate both fish α7 and α4β2 nAChR. Our data therefore indicate that while some pharmacological tools used in zebrafish may function as expected, others will not.
Developmental Dynamics | 2009
Kristin Michelle Ackerman; Robin J. Nakkula; Jeffrey M. Zirger; Christine E. Beattie; R. Thomas Boyd
Acetylcholine plays an important role in regulation of nervous system development and function. We are developing zebrafish (Danio rerio) as a model system to study the role of specific neuronal nicotinic acetylcholine receptor (nAChR) subtypes in development and the effects of nicotine on the developing vertebrate nervous system. We previously characterized the expression of several zebrafish nAChR subunits. To further develop the zebrafish model, here we report a study on the molecular characterization of two additional nAChR subunit genes, designated chrna6 and chrna4. Both zebrafish nAChRs have a high degree of sequence identity to nAChRs expressed in a variety of mammalian species. Reverse transcription polymerase chain reaction was used to show that both nAChR subunit RNAs were expressed early in zebrafish development, with the chrna4 transcript present at 3 hours postfertilization (hpf) and the chrna6 RNA present at 10 hpf. In situ hybridization was used to localize chrna6 and chrna4 RNA expression in 24, 48, 72, and 96 hpf zebrafish. The chrna6 and chrna4 RNAs were each expressed in a unique pattern, which changed during development. At various ages, chrna6 was expressed in Rohon‐Beard sensory neurons, trigeminal ganglion, retina, and the pineal gland. Most notably, chrna6 was expressed in catecholaminergic neurons in the midbrain, but was also present in noncatecholaminergic cells in both midbrain and hindbrain. The expression of chrna6 RNA in catecholaminergic cells supports the use of zebrafish as a valid model system to better understand the molecular basis of cholinergic regulation of dopaminergic signaling and the role of α6‐containing nAChRs in Parkinsons disease. The most notable chrna4 expression was in neural crest cells at 24 hpf and reticulospinal neurons in hindbrain at 48 hpf. chrna4 RNA exhibited a widespread and robust expression pattern in the midbrain in 72 hpf and 96 hpf zebrafish. Developmental Dynamics 238:980–992, 2009.
Journal of Pharmacology and Experimental Therapeutics | 2009
Tatiana F. González-Cestari; Brandon J. Henderson; Ryan E. Pavlovicz; Susan B. McKay; Raed A. El-Hajj; Aravinda B. Pulipaka; Crina M. Orac; Damon D. Reed; R. Thomas Boyd; Michael X. Zhu; Chenglong Li; Stephen C. Bergmeier; Dennis B. McKay
Allosteric modulation of nAChRs is considered to be one of the most promising approaches for drug design targeting nicotinic acetylcholine receptors (nAChRs). We have reported previously on the pharmacological activity of several compounds that seem to act noncompetitively to inhibit the activation of α3β4* nAChRs. In this study, the effects of 51 structurally similar molecules on native and recombinant α3β4 nAChRs are characterized. These 51 molecules inhibited adrenal neurosecretion activated via stimulation of native α3β4* nAChR, with IC50 values ranging from 0.4 to 13.0 μM. Using cells expressing recombinant α3β4 nAChRs, these molecules inhibited calcium accumulation (a more direct assay to establish nAChR activity), with IC50 values ranging from 0.7 to 38.2 μM. Radiolabeled nAChR binding studies to orthosteric sites showed no inhibitory activity on either native or recombinant nAChRs. Correlation analyses of the data from both functional assays suggested additional, non-nAChR activity of the molecules. To test this hypothesis, the effects of the drugs on neurosecretion stimulated through non-nAChR mechanisms were investigated; inhibitory effects ranged from no inhibition to 95% inhibition at concentrations of 10 μM. Correlation analyses of the functional data confirmed this hypothesis. Several of the molecules (24/51) increased agonist binding to native nAChRs, supporting allosteric interactions with nAChRs. Computational modeling and blind docking identified a binding site for our negative allosteric modulators near the orthosteric binding site of the receptor. In summary, this study identified several molecules for potential development as negative allosteric modulators and documented the importance of multiple screening assays for nAChR drug discovery.
Neuroscience Letters | 2003
R. Benjamin Free; Nathaniel D von Fischer; R. Thomas Boyd; Dennis B. McKay
Abstract In these studies, [ 3 H]epibatidine is used as the radioligand to characterize recombinant bovine α3β4 nicotinic acetylcholine receptors (nAChRs) expressed in HEK 293 cells. Specific binding reaches equilibrium quickly and is saturable with a K d value of 0.66 nM. The affinities of the several cholinergic agents were determined, including nicotine ( K i , 0.5 μM), cytisine ( K i , 0.5 μM), carbachol ( K i , 4.1 μM), dihydro-(β)-erythroidine ( K i , 43.5 μM), d-tubocurarine ( K i , 0.1 μM), 1,1-dimethyl-4-phenylpiperazinium ( K i , 0.5 μM), decamethonium ( K i , 175 μM) and methyllycaconitine ( K i , 0.4 μM). These studies show that the pharmacological characteristics of recombinant bovine α3β4 nAChRs are similar to native bovine α3β4* nAChRs, and indicate that the α5 subunit, if present in the native nAChRs, does not affect ligand affinity.