Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. W. Doerge is active.

Publication


Featured researches published by R. W. Doerge.


Nature | 2004

Role of transposable elements in heterochromatin and epigenetic control

Zachary Lippman; Anne Valérie Gendrel; Michael Black; Matthew W. Vaughn; Neilay Dedhia; W. Richard McCombie; Kimberly Lavine; Vivek Mittal; Bruce May; Kristin B. Kasschau; James C. Carrington; R. W. Doerge; Vincent Colot; Robert A. Martienssen

Heterochromatin has been defined as deeply staining chromosomal material that remains condensed in interphase, whereas euchromatin undergoes de-condensation. Heterochromatin is found near centromeres and telomeres, but interstitial sites of heterochromatin (knobs) are common in plant genomes and were first described in maize. These regions are repetitive and late-replicating. In Drosophila, heterochromatin influences gene expression, a heterochromatin phenomenon called position effect variegation. Similarities between position effect variegation in Drosophila and gene silencing in maize mediated by “controlling elements” (that is, transposable elements) led in part to the proposal that heterochromatin is composed of transposable elements, and that such elements scattered throughout the genome might regulate development. Using microarray analysis, we show that heterochromatin in Arabidopsis is determined by transposable elements and related tandem repeats, under the control of the chromatin remodelling ATPase DDM1 (Decrease in DNA Methylation 1). Small interfering RNAs (siRNAs) correspond to these sequences, suggesting a role in guiding DDM1. We also show that transposable elements can regulate genes epigenetically, but only when inserted within or very close to them. This probably accounts for the regulation by DDM1 and the DNA methyltransferase MET1 of the euchromatic, imprinted gene FWA, as its promoter is provided by transposable-element-derived tandem repeats that are associated with siRNAs.


Trends in Genetics | 2003

Understanding mechanisms of novel gene expression in polyploids

Thomas C. Osborn; J. Chris Pires; James A. Birchler; Donald L. Auger; Z. Jeffery Chen; Hyeon Se Lee; Luca Comai; Andreas Madlung; R. W. Doerge; Vincent Colot; Robert A. Martienssen

Polyploidy has long been recognized as a prominent force shaping the evolution of eukaryotes, especially flowering plants. New phenotypes often arise with polyploid formation and can contribute to the success of polyploids in nature or their selection for use in agriculture. Although the causes of novel variation in polyploids are not well understood, they could involve changes in gene expression through increased variation in dosage-regulated gene expression, altered regulatory interactions, and rapid genetic and epigenetic changes. New research approaches are being used to study these mechanisms and the results should provide a more complete understanding of polyploidy.


Nature Reviews Genetics | 2002

MAPPING AND ANALYSIS OF QUANTITATIVE TRAIT LOCI IN EXPERIMENTAL POPULATIONS

R. W. Doerge

Simple statistical methods for the study of quantitative trait loci (QTL), such as analysis of variance, have given way to methods that involve several markers and high-resolution genetic maps. As a result, the mapping community has been provided with statistical and computational tools that have much greater power than ever before for studying and locating multiple and interacting QTL. Apart from their immediate practical applications, the lessons learnt from this evolution of QTL methodology might also be generally relevant to other types of functional genomics approach that are aimed at the dissection of complex phenotypes, such as microarray assessment of gene expression.


Genetics | 2005

Genomewide Nonadditive Gene Regulation in Arabidopsis Allotetraploids

Jianlin Wang; Lu Tian; Hyeon Se Lee; Ning E. Wei; Hongmei Jiang; Brian Watson; Andreas Madlung; Thomas C. Osborn; R. W. Doerge; Luca Comai; Z. Jeffrey Chen

Polyploidy has occurred throughout the evolutionary history of all eukaryotes and is extremely common in plants. Reunification of the evolutionarily divergent genomes in allopolyploids creates regulatory incompatibilities that must be reconciled. Here we report genomewide gene expression analysis of Arabidopsis synthetic allotetraploids, using spotted 70-mer oligo-gene microarrays. We detected >15% transcriptome divergence between the progenitors, and 2105 and 1818 genes were highly expressed in Arabidopsis thaliana and A. arenosa, respectively. Approximately 5.2% (1362) and 5.6% (1469) genes displayed expression divergence from the midparent value (MPV) in two independently derived synthetic allotetraploids, suggesting nonadditive gene regulation following interspecific hybridization. Remarkably, the majority of nonadditively expressed genes in the allotetraploids also display expression changes between the parents, indicating that transcriptome divergence is reconciled during allopolyploid formation. Moreover, >65% of the nonadditively expressed genes in the allotetraploids are repressed, and >94% of the repressed genes in the allotetraploids match the genes that are expressed at higher levels in A. thaliana than in A. arenosa, consistent with the silencing of A. thaliana rRNA genes subjected to nucleolar dominance and with overall suppression of the A. thaliana phenotype in the synthetic allotetraploids and natural A. suecica. The nonadditive gene regulation is involved in various biological pathways, and the changes in gene expression are developmentally regulated. In contrast to the small effects of genome doubling on gene regulation in autotetraploids, the combination of two divergent genomes in allotetraploids by interspecific hybridization induces genomewide nonadditive gene regulation, providing a molecular basis for de novo variation and allopolyploid evolution.


PLOS Biology | 2007

Epigenetic natural variation in Arabidopsis thaliana

Matthew W. Vaughn; Miloš Tanurdžić; Zachary Lippman; Hongmei Jiang; Robert Carrasquillo; Pablo D. Rabinowicz; Neilay Dedhia; W. Richard McCombie; Nicolas Agier; Agnès Bulski; Vincent Colot; R. W. Doerge; Robert A. Martienssen

Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F 2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means.


Nature Reviews Genetics | 2003

The nature and identification of quantitative trait loci: a community’s view

Oduola Abiola; Joe M. Angel; Philip Avner; Alexander A. Bachmanov; John K. Belknap; Beth Bennett; Elizabeth P. Blankenhorn; David A. Blizard; Valerie J. Bolivar; Gudrun A. Brockmann; Kari J. Buck; Jean François Bureau; William L. Casley; Elissa J. Chesler; James M. Cheverud; Gary A. Churchill; Melloni N. Cook; John C. Crabbe; Wim E. Crusio; Ariel Darvasi; Gerald de Haan; Peter Demant; R. W. Doerge; Rosemary W. Elliott; Charles R. Farber; Lorraine Flaherty; Jonathan Flint; Howard K. Gershenfeld; J. P. Gibson; Jing Gu

This white paper by eighty members of the Complex Trait Consortium presents a communitys view on the approaches and statistical analyses that are needed for the identification of genetic loci that determine quantitative traits. Quantitative trait loci (QTLs) can be identified in several ways, but is there a definitive test of whether a candidate locus actually corresponds to a specific QTL?


Genetics | 2006

Global eQTL Mapping Reveals the Complex Genetic Architecture of Transcript-Level Variation in Arabidopsis

Marilyn A. L. West; Kyunga Kim; Daniel J. Kliebenstein; Hans van Leeuwen; Richard W. Michelmore; R. W. Doerge; Dina A. St. Clair

The genetic architecture of transcript-level variation is largely unknown. The genetic determinants of transcript-level variation were characterized in a recombinant inbred line (RIL) population (n = 211) of Arabidopsis thaliana using whole-genome microarray analysis and expression quantitative trait loci (eQTL) mapping of transcript levels as expression traits (e-traits). Genetic control of transcription was highly complex: one-third of the quantitatively controlled transcripts/e-traits were regulated by cis-eQTL, and many trans-eQTL mapped to hotspots that regulated hundreds to thousands of e-traits. Several thousand eQTL of large phenotypic effect were detected, but almost all (93%) of the 36,871 eQTL were associated with small phenotypic effects (R2 < 0.3). Many transcripts/e-traits were controlled by multiple eQTL with opposite allelic effects and exhibited higher heritability in the RILs than their parents, suggesting nonadditive genetic variation. To our knowledge, this is the first large-scale global eQTL study in a relatively large plant mapping population. It reveals that the genetic control of transcript level is highly variable and multifaceted and that this complexity may be a general characteristic of eukaryotes.


Genetics | 2010

Statistical Design and Analysis of RNA Sequencing Data

Paul L. Auer; R. W. Doerge

Next-generation sequencing technologies are quickly becoming the preferred approach for characterizing and quantifying entire genomes. Even though data produced from these technologies are proving to be the most informative of any thus far, very little attention has been paid to fundamental design aspects of data collection and analysis, namely sampling, randomization, replication, and blocking. We discuss these concepts in an RNA sequencing framework. Using simulations we demonstrate the benefits of collecting replicated RNA sequencing data according to well known statistical designs that partition the sources of biological and technical variation. Examples of these designs and their corresponding models are presented with the goal of testing differential expression.


Trends in Genetics | 1995

QTL mapping in rice

Susan R. McCough; R. W. Doerge

In the past 10 years, interest in applying the tools of molecular genetics to the problem of increasing world rice production has resulted in the generation of two highly saturated, molecular linkage maps of rice, and the localization of numerous genes and quantitative trait loci (QTLs). Primary studies have identified QTLs associated with disease resistance, abiotic stress tolerance and yield potential of rice in a range of ecosystems. The ability to identify, manipulate and potentially clone individual genes involved in quantitatively inherited characters, combined with the demonstrated conservation of numerous linkage blocks among members of the grass family, emphasizes the contribution of map-based genetic analyses both to applied and to basic crop research.


PLOS Biology | 2008

Epigenomic consequences of immortalized plant cell suspension culture.

Milos Tanurdzic; Matthew W. Vaughn; Hongmei Jiang; Tae-Jin Lee; R. Keith Slotkin; Bryon Sosinski; William F. Thompson; R. W. Doerge; Robert A. Martienssen

Plant cells grown in culture exhibit genetic and epigenetic instability. Using a combination of chromatin immunoprecipitation and DNA methylation profiling on tiling microarrays, we have mapped the location and abundance of histone and DNA modifications in a continuously proliferating, dedifferentiated cell suspension culture of Arabidopsis. We have found that euchromatin becomes hypermethylated in culture and that a small percentage of the hypermethylated genes become associated with heterochromatic marks. In contrast, the heterochromatin undergoes dramatic and very precise DNA hypomethylation with transcriptional activation of specific transposable elements (TEs) in culture. High throughput sequencing of small interfering RNA (siRNA) revealed that TEs activated in culture have increased levels of 21-nucleotide (nt) siRNA, sometimes at the expense of the 24-nt siRNA class. In contrast, TEs that remain silent, which match the predominant 24-nt siRNA class, do not change significantly in their siRNA profiles. These results implicate RNA interference and chromatin modification in epigenetic restructuring of the genome following the activation of TEs in immortalized cell culture.

Collaboration


Dive into the R. W. Doerge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Martienssen

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andreas Madlung

University of Puget Sound

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Comai

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas C. Osborn

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Z. Jeffrey Chen

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge