Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. W. Lindsay is active.

Publication


Featured researches published by R. W. Lindsay.


Journal of Climate | 2005

The Thinning of Arctic Sea Ice, 1988–2003: Have We Passed a Tipping Point?

R. W. Lindsay; Jinlun Zhang

Recent observations of summer Arctic sea ice over the satellite era show that record or near-record lows for the ice extent occurred in the years 2002–05. To determine the physical processes contributing to these changes in the Arctic pack ice, model results from a regional coupled ice–ocean model have been analyzed. Since 1988 the thickness of the simulated basinwide ice thinned by 1.31 m or 43%. The thinning is greatest along the coast in the sector from the Chukchi Sea to the Beaufort Sea to Greenland. It is hypothesized that the thinning since 1988 is due to preconditioning, a trigger, and positive feedbacks: 1) the fall, winter, and spring air temperatures over the Arctic Ocean have gradually increased over the last 50 yr, leading to reduced thickness of first-year ice at the start of summer; 2) a temporary shift, starting in 1989, of two principal climate indexes (the Arctic Oscillation and Pacific Decadal Oscillation) caused a flushing of some of the older, thicker ice out of the basin and an increase in the summer open water extent; and 3) the increasing amounts of summer open water allow for increasing absorption of solar radiation, which melts the ice, warms the water, and promotes creation of thinner first-year ice, ice that often entirely melts by the end of the subsequent summer. Internal thermodynamic changes related to the positive ice–albedo feedback, not external forcing, dominate the thinning processes over the last 16 yr. This feedback continues to drive the thinning after the climate indexes return to near-normal conditions in the late 1990s. The late 1980s and early 1990s could be considered a tipping point during which the ice–ocean system began to enter a new era of thinning ice and increasing summer open water because of positive feedbacks. It remains to be seen if this era will persist or if a sustained cooling period can reverse the processes.


Journal of Climate | 2014

Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic

R. W. Lindsay; Mark Wensnahan; Axel Schweiger; Jinlun Zhang

AbstractAtmospheric reanalyses depend on a mix of observations and model forecasts. In data-sparse regions such as the Arctic, the reanalysis solution is more dependent on the model structure, assumptions, and data assimilation methods than in data-rich regions. Applications such as the forcing of ice–ocean models are sensitive to the errors in reanalyses. Seven reanalysis datasets for the Arctic region are compared over the 30-yr period 1981–2010: National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research Reanalysis 1 (NCEP-R1) and NCEP–U.S. Department of Energy Reanalysis 2 (NCEP-R2), Climate Forecast System Reanalysis (CFSR), Twentieth-Century Reanalysis (20CR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), ECMWF Interim Re-Analysis (ERA-Interim), and Japanese 25-year Reanalysis Project (JRA-25). Emphasis is placed on variables not observed directly including surface fluxes and precipitation and their trends. The monthly averaged surface tem...


Journal of Climate | 2009

Arctic Sea Ice Retreat in 2007 Follows Thinning Trend

R. W. Lindsay; Jinlun Zhang; Axel Schweiger; Michael Steele; Harry L. Stern

The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of 0.57 m decade 1 . Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


Journal of Climate | 2008

Relationships between Arctic Sea Ice and Clouds during Autumn

Axel Schweiger; R. W. Lindsay; Steve Vavrus; Jennifer A. Francis

The connection between sea ice variability and cloud cover over the Arctic seas during autumn is investigated by analyzing the 40-yr ECMWF Re-Analysis (ERA-40) products and the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) Polar Pathfinder satellite datasets. It is found that cloud cover variability near the sea ice margins is strongly linked to sea ice variability. Sea ice retreat is linked to a decrease in low-level cloud amount and a simultaneous increase in midlevel clouds. This pattern is apparent in both data sources. Changes in cloud cover can be explained by changes in the atmospheric temperature structure and an increase in near-surface temperatures resulting from the removal of sea ice. The subsequent decrease in static stability and deepening of the atmospheric boundary layer apparently contribute to the rise in cloud level. The radiative effect of this change is relatively small, as the direct radiative effects of cloud cover changes are compensated for by changes in the temperature and humidity profiles associated with varying ice conditions.


IEEE Transactions on Geoscience and Remote Sensing | 1996

The discrete wavelet transform and the scale analysis of the surface properties of sea ice

R. W. Lindsay; Donald B. Percival; D. A. Rothrock

The formalism of the one-dimensional discrete wavelet transform (DWT) based on Daubechies wavelet filters is outlined in terms of finite vectors and matrices. Both the scale-dependent wavelet variance and wavelet covariance are considered and confidence intervals for each are determined. The variance estimates are more accurately determined with a maximal-overlap version of the wavelet transform. The properties of several Daubechies wavelet filters and the associated basis vectors are discussed. Both the Mallat orthogonal-pyramid algorithm for determining the DWT and a pyramid algorithm for determining the maximal-overlap version of the transform are presented in terms of finite vectors. As an example, the authors investigate the scales of variability of the surface temperature and albedo of spring pack ice in the Beaufort Sea. The data analyzed are from individual lines of a Landsat TM image (25-m sample interval) and include both reflective (channel 3, 30-m resolution) and thermal (channel 6, 120-m resolution) data. The wavelet variance and covariance estimates are presented and more than half of the variance is accounted for by scales of less than 800 m. A wavelet-based technique for enhancing the lower-resolution thermal data using the reflected data is introduced. The simulated effects of poor instrument resolution on the estimated lead number density and the mean lead width are investigated using a wavelet-based smooth of the observations.


Boundary-Layer Meteorology | 1979

The turbulent heat flux from arctic leads

E. L. Andreas; C. A. Paulson; R. M. William; R. W. Lindsay; Joost A. Businger

The turbulent transfer of heat from Arctic leads in winter is one of the largest terms in the Arctic heat budget. Results from the AIDJEX Lead Experiment (ALEX) suggest that the sensible component of this turbulent heat flux can be predicted from bulk quantities. Both the exponential relation N = 0.14Rx0.72 and the linear relation N = 1.6 × 10−3Rx+ 1400 fit our data well. In these, N is the Nusselt number formed with the integrated surface heat flux, and Rx is the Reynolds number based on fetch across the lead. Because of the similarity between heat and moisture transfer, these equations also predict the latent heat flux. Over leads in winter, the sensible heat flux is two to four times larger than the latent heat flux.The internal boundary layer (IBL) that develops when cold air encounters the relatively warm lead is most evident in the modified downwind temperature profiles. The height of this boundary layer, δ, depends on the fetch, x, on the surface roughness of the lead, z0 and on both downwind and upwind stability. A tentative, empirical model for boundary layer growth is % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabes% 7aKbqaaiaadQhadaWgaaWcbaGaaGimaaqabaaaaOGaeyypa0JaeqOS% di2aaeWaaeaacqGHsisldaWcaaqaaiaadQhadaWgaaWcbaGaaGimaa% qabaaakeaacaWGmbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGim% aiaac6cacaaI4aaaaOWaaeWaaeaadaWcaaqaaiaadIhaaeaacaWG6b% WaaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa% baGaaGimaiaac6cacaaI0aaaaaaa!472D!\[\frac{\delta }{{z_0 }} = \beta \left( { - \frac{{z_0 }}{L}} \right)^{0.8} \left( {\frac{x}{{z_0 }}} \right)^{0.4} \] where L is the Obukhov length based on the values of the momentum and sensible heat fluxes at the surface of the lead, and Β is a constant reflecting upwind stability.Velocity profiles over leads are also affected by the surface nonhomogeneity. Besides being warmer than the upwind ice, the surface of the lead is usually somewhat rougher. The velocity profiles therefore tend to decelerate near the surface, accelerate in the mid-region of the IBL because of the intense mixing driven by the upward heat flux, and rejoin the upwind profiles above the boundary layer. The profiles thus have distinctly different shapes for stable and unstable upwind conditions.


Journal of Atmospheric and Oceanic Technology | 2006

Assimilation of Ice Concentration in an Ice–Ocean Model

R. W. Lindsay; Jinlun Zhang

Abstract Ice concentration is a critical parameter of the polar marine environment because of the large effect sea ice has on the surface albedo and heat exchange between the atmosphere and the ocean. Simulations of the energy exchange processes in models would benefit if the ice concentration were represented more accurately. Reanalysis simulations that use historical wind and temperature fields may develop erroneous ice concentration estimates; these can be corrected by using observed ice concentration fields. The ice concentration assimilation presented here is a new method based on nudging the model ice concentration toward the observed concentration in a manner that emphasizes the ice extent and minimizes the effect of observational errors in the interior of the pack. The nudging weight is a nonlinear function of the difference between the model and the observed ice concentration. The simulated ice extent is improved with the assimilation of ice concentration but is not identical to the observed exte...


Journal of Climate | 2006

The Influence of Sea Ice on Ocean Heat Uptake in Response to Increasing CO2

Cecilia M. Bitz; Peter R. Gent; Rebecca A. Woodgate; Marika M. Holland; R. W. Lindsay

Two significant changes in ocean heat uptake that occur in the vicinity of sea ice cover in response to increasing CO2 are investigated with Community Climate System Model version 3 (CCSM3): a deep warming below 500 m and extending down several kilometers in the Southern Ocean and warming in a 200-m layer just below the surface in the Arctic Ocean. Ocean heat uptake caused by sea ice retreat is isolated by running the model with the sea ice albedo reduced artificially alone. This integration has a climate response with strong ocean heat uptake in the Southern Ocean and modest ocean heat uptake in the subsurface Arctic Ocean. The Arctic Ocean warming results from enhanced ocean heat transport from the northern North Atlantic. At the time of CO2 doubling, about 1/3 of the heat transport anomaly results from advection of anomalously warm water and 2/3 results from strengthened inflow. At the same time the overturning circulation is strengthened in the northern North Atlantic and Arctic Oceans. Wind stress changes cannot explain the circulation changes, which instead appear related to strengthened convection along the Siberian shelves. Deep ocean warming in the Southern Ocean is initiated by weakened convection, which is mainly a result of surface freshening through altered sea ice and ocean freshwater transport. Below about 500 m, changes in convection reduce the vertical and meridional temperature gradients in the Southern Ocean, which significantly reduce isopycnal diffusion of heat upward around Antarctica. The geometry of the sea ice cover and its influence on convection have a strong influence on ocean temperature gradients, making sea ice an important player in deep ocean heat uptake in the Southern Ocean.


Journal of Climate | 1998

Temporal Variability of the Energy Balance of Thick Arctic Pack Ice

R. W. Lindsay

Abstract The temporal variability of the six terms of the energy balance equation for a slab of ice 3 m thick is calculated based on 45 yr of surface meteorological observations from the drifting ice stations of the former Soviet Union. The equation includes net radiation, sensible heat flux, latent heat flux, bottom heat flux, heat storage, and energy available for melting. The energy balance is determined with a time-dependent 10-layer thermodynamic model of the ice slab that determines the surface temperature and the ice temperature profile using 3-h forcing values. The observations used for the forcing values are the 2-m air temperature, relative humidity and wind speed, the cloud fraction, the snow depth and density, and the albedo of the nonponded ice. The downwelling radiative fluxes are estimated with parameterizations based on the cloud cover, the air temperature and humidity, and the solar angle. The linear relationship between the air temperature and both the cloud fraction and the wind speed i...


Annals of Glaciology | 2011

Solar partitioning in a changing Arctic sea-ice cover

Bonnie Light; Hajo Eicken; Thorsten Markus; Julienne Stroeve; R. W. Lindsay

Abstract The summer extent of the Arctic sea-ice cover has decreased in recent decades and there have been alterations in the timing and duration of the summer melt season. These changes in ice conditions have affected the partitioning of solar radiation in the Arctic atmosphere–ice–ocean system. the impact of sea-ice changes on solar partitioning is examined on a pan-Arctic scale using a 25 km × 25 km Equal-Area Scalable Earth Grid for the years 1979–2007. Daily values of incident solar irradiance are obtained from NCEP reanalysis products adjusted by ERA-40, and ice concentrations are determined from passive microwave satellite data. the albedo of the ice is parameterized by a five-stage process that includes dry snow, melting snow, melt pond formation, melt pond evolution, and freeze-up. the timing of these stages is governed by the onset dates of summer melt and fall freeze-up, which are determined from satellite observations. Trends of solar heat input to the ice were mixed, with increases due to longer melt seasons and decreases due to reduced ice concentration. Results indicate a general trend of increasing solar heat input to the Arctic ice–ocean system due to declines in albedo induced by decreases in ice concentration and longer melt seasons. the evolution of sea-ice albedo, and hence the total solar heating of the ice–ocean system, is more sensitive to the date of melt onset than the date of fall freeze-up. the largest increases in total annual solar heat input from 1979 to 2007, averaging as much as 4%a–1, occurred in the Chukchi Sea region. the contribution of solar heat to the ocean is increasing faster than the contribution to the ice due to the loss of sea ice.

Collaboration


Dive into the R. W. Lindsay's collaboration.

Top Co-Authors

Avatar

Jinlun Zhang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Axel Schweiger

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Harry L. Stern

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. A. Rothrock

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Kwok

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Weingartner

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Y. Yu

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge