Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Wijma is active.

Publication


Featured researches published by R. Wijma.


Journal of Dairy Science | 2016

Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders

M.L. Stangaferro; R. Wijma; L.S. Caixeta; Al-Abri; J.O. Giordano

The objectives of this study were to evaluate (1) the performance of an automated health-monitoring system (AHMS) to identify cows with metabolic and digestive disorders-including displaced abomasum, ketosis, and indigestion-based on an alert system (health index score, HIS) that combines rumination time and physical activity; (2) the number of days between the first HIS alert and clinical diagnosis (CD) of the disorders by farm personnel; and (3) the daily rumination time, physical activity, and HIS patterns around CD. Holstein cattle (n=1,121; 451 nulliparous and 670 multiparous) were fitted with a neck-mounted electronic rumination and activity monitoring tag (HR Tags, SCR Dairy, Netanya, Israel) from at least -21 to 80 d in milk (DIM). Raw data collected in 2-h periods were summarized per 24 h as daily rumination and activity. A HIS (0 to 100 arbitrary units) was calculated daily for individual cows with an algorithm that used rumination and activity. A positive HIS outcome was defined as a HIS of <86 during at least 1 d from -5 to 2 d after CD. Blood concentrations of nonesterified fatty acids, β-hydroxybutyrate, total calcium, and haptoglobin were determined in a subgroup of cows (n=459) at -11±3, -4±3, 0, 3±1, 7±1, 14±1, and 28±1 DIM. The sensitivity of the HIS was 98% [95% confidence interval (CI): 93, 100] for displaced abomasum (n=41); 91% (95% CI: 83, 99) for ketosis (n=54); 89% (95% CI: 68, 100) for indigestion (n=9); and 93% (95% CI: 89, 98) for all metabolic and digestive disorders combined (n=104). Days (mean and 95% CI) from the first positive HIS <86 and CD were -3 (-3.7, -2.3), -1.6 (-2.3, -1.0), -0.5 (-1.5, 0.5), and -2.1 (-2.5, -1.6) for displaced abomasum, ketosis, indigestion, and all metabolic and digestive disorders, respectively. The patterns of rumination, activity, and HIS for cows flagged by the AHMS were characterized by lower levels than for cows without a health disorder and cows not flagged by the AHMS from -5 to 5 d after CD, depending on the disorder and parameter. Differences between cows without health disorders and those flagged by the AHMS for blood markers of metabolic and health status confirmed the observations of the CD and AHMS alerts. The overall sensitivity and timing of the AHMS alerts for cows with metabolic and digestive disorders indicated that AHMS that combine rumination and activity could be a useful tool for identifying cows with metabolic and digestive disorders.


Journal of Dairy Science | 2016

Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part III. Metritis

M.L. Stangaferro; R. Wijma; L.S. Caixeta; Al-Abri; J.O. Giordano

The objectives of this study were to evaluate (1) the performance of an automated health-monitoring system (AHMS) to identify cows with metritis based on an alert system (health index score, HIS) that combines rumination time and physical activity; (2) the number of days between the first HIS alert and clinical diagnosis (CD) of metritis by farm personnel; and (3) the daily rumination time, physical activity, and HIS patterns around CD. In this manuscript, the overall performance of HIS to detect cows with all disorders of interest in this study [ketosis, displaced abomasum, indigestion (companion paper, part I), mastitis (companion paper, part II), and metritis] is also reported. Holstein cattle (n=1,121; 451 nulliparous and 670 multiparous) were fitted with a neck-mounted electronic rumination and activity monitoring tag (HR Tags, SCR Dairy, Netanya, Israel) from at least -21 to 80 d in milk (DIM). Raw data collected in 2-h periods were summarized per 24 h as daily rumination and activity. An HIS (0 to 100 arbitrary units) was calculated daily for individual cows with an algorithm that used rumination and activity. A positive HIS outcome was defined as an HIS of <86 units during at least 1 d from -5 to 2 d after CD. Blood concentrations of nonesterified fatty acids, β-hydroxybutyrate, total calcium, and haptoglobin were determined in a subgroup of cows (n=459) at -11±3, -4±3, 0, 3±1, 7±1, 14±1, and 28±1 DIM. The overall sensitivity of HIS was 55% for all cases of metritis (n=349), but it was greater for cows with metritis and another disorder (78%) than for cows with metritis only (53%). Cows diagnosed with metritis and flagged based on HIS had substantial alterations in their rumination, activity, and HIS patterns around CD, alterations of blood markers of metabolic and health status around calving, reduced milk production, and were more likely to exit the herd than cows not flagged based on the HIS and cows without disease, suggesting that cows flagged based on the HIS had a more severe episode of metritis. Including all disorders of interest for this study, the overall sensitivity was 59%, specificity was 98%, positive predictive value was 58%, negative predictive value was 98%, and accuracy was 96%. The AHMS was effective for identifying cows with severe cases of metritis, but less effective for identifying cows with mild cases of metritis. Also, the overall accuracy and timing of the AHMS alerts for cows with health disorders indicated that AHMS that combine rumination and activity could be a useful tool for identifying cows with metabolic and digestive disorders, and more severe cases of mastitis and metritis.


Journal of Dairy Science | 2015

Reproductive performance of dairy cows managed with a program aimed at increasing insemination of cows in estrus based on increased physical activity and fertility of timed artificial inseminations

J.O. Giordano; M.L. Stangaferro; R. Wijma; W.C. Chandler; R.D. Watters

The objective of this study was to compare the reproductive performance of lactating dairy cows using a treatment (TRT) program for second and subsequent artificial insemination (AI) services aimed at (1) increasing AI upon estrus detection based on increased physical activity (AIAct) and (2) increasing fertility of timed AI (TAI) services for cows not AIAct through presynchronization of the estrous cycle and improved physiological milieu before TAI. Cows in the control (CON) group were managed with a program that combined AIAct and TAI after the Ovsynch protocol. After nonpregnancy diagnosis (NPD) by transrectal ultrasonography at 31 ± 3 d after AI, cows received the following treatments: (1) CON (n=634), AIAct any time after a previous AI and resynchronization with the Ovsynch-56 protocol (GnRH-7d-PGF2α-56 h-GnRH-16 h-TAI) 1d after NPD, or (2) TRT (n = 616): cows with a corpus luteum (CL) ≥ 20 mm (TRT-CL) received a PGF2α injection 1d after NPD, whereas cows with no CL or a CL < 20 mm (TRT-NoCL) received a GnRH injection 3d after NPD. Cows in TRT-CL and TRT-NoCL not AIAct were enrolled in a 5-d Ovsynch + progesterone protocol (GnRH + controlled internal drug release-5d-PGF2α + controlled internal drug release removal-24 h-PGF2α -32 h-GnRH-16 h-TAI) 9 and 7d after the PGF2α or GnRH injection, respectively, to receive TAI. The hazard of pregnancy up to 270 DIM was similar for cows in the CON and TRT group (hazard ratio = 1.07, 95% CI = 0.95 to 1.21), but it was affected by parity (primiparous greater than multiparous cows). Median days to pregnancy for the CON and TRT group were 111 and 110 d, respectively. When evaluated after 104 DIM (first time point at which cows were affected by the treatments), the hazard of pregnancy was similar for the CON and TRT group (hazard ratio = 1.15, 95% CI = 0.95 to 1.39). Based on this analysis, median days to pregnancy for the CON and TRT group were 161 and 178 d, respectively. Thus, in spite of increasing the proportion of cows AIAct (29 and 10% for TRT and CON), median days to insemination after NPD were greater for cows in the TRT (17 d) than the CON (10 d) group, which coupled with similar fertility to AIAct, and TAI failed to improve overall reproductive performance. A low proportion of cows with a CL at NPD (65.2%) and a poor response to PGF2α may explain the poor estrus detection efficiency in the TRT group. We concluded that, when compared with a typical estrus detection and TAI program for cows failing to conceive to previous AI services, a program aimed at increasing the proportion of cows AIAct after NPD and fertility of TAI services increased the proportion of cows AIAct but failed to reduce days to pregnancy during lactation because of greater days to AI after NPD.


Journal of Dairy Science | 2016

Reproductive management strategies to improve the fertility of cows with a suboptimal response to resynchronization of ovulation

J.O. Giordano; Mark J. Thomas; G. Catucuamba; M.D. Curler; M. Masello; M.L. Stangaferro; R. Wijma

The objective was to compare the reproductive performance of lactating Holstein cows managed with a strategy that included the Ovsynch protocol with exogenous progesterone (P4) supplementation or presynchronization with GnRH 7d before Ovsynch to treat cows without a corpus luteum (CL), a CL <15 mm, or cystic at the time of the PGF2α injection of Resynch (GnRH-7 d-PGF2α-56 h-GnRH-16 to 20 h-TAI). In a preliminary study, blood collection and transrectal ovarian ultrasonography were conducted (n=555) at the PGF2α of Resynch [coincident with nonpregnancy diagnosis (NPD)] to define a cutoff value for CL size that better predicted fertility after timed artificial insemination (TAI). A CL size of 15 mm was selected based on statistical differences in pregnancies per AI (P/AI) [33.2 vs. 10.3 P/AI for CL ≥15 mm (n=497) vs. no CL ≥15 mm (n=58; no CL, CL <15 mm, or cystic)]. Subsequently, in a completely randomized experiment, cows were enrolled in a management strategy that used Ovsynch with P4 supplementation [Ovsynch+P4; GnRH and controlled internal drug release device (CIDR)-7 d-PGF2α and CIDR removal-56 h-GnRH-16 to 20 h-TAI] or a PreG-Ovsynch protocol [PreG-Ovsynch; GnRH-7 d-GnRH-7 d-PGF2α-56 h-GnRH-16 to 20 h-TAI] to treat cows without a CL, a CL <15 mm, or cystic at NPD and the PGF2α of Resynch. Cows with a CL ≥15 mm at the PGF2α of Resynch completed the protocol and received TAI. Data were available from 212, 192, and 1,797 AI services after Ovsynch+P4, PreG-Ovsynch, and Resynch, respectively. At 39d after AI, P/AI tended to be greater for Ovsynch+P4 and PreG-Ovsynch combined (35.1%) than for Resynch cows (31.1%), whereas P/AI were similar for Ovsynch+P4 (34.4%) and PreG-Ovsynch (35.9%). The hazard of pregnancy for cows that received the experimental treatments at least once was similar for cows in the Ovsynch+P4 (n=124) and the PreG-Ovsynch (n=132) group (hazard ratio 1.15; 95% confidence interval: 0.87 to 1.53). Median days to pregnancy were 52 and 59 for cows in the Ovsynch+P4 and the PreG-Ovsynch groups, respectively. The presynchronizing GnRH injection of PreG-Ovsynch induced ovulation in 86.0% of the cows. At the first GnRH of Ovsynch, the proportion of cows with a CL based on ultrasound (86.6 vs. 15.0%), P4 >1 ng/mL (82.8 vs. 31.8%), a follicle ≥ 10 mm (98.0 vs. 84.4%), and P4 concentrations (3.7 vs. 1.1 ng/mL) was greater in PreG-Ovsynch than in Ovsynch+P4. Conversely, more cows ovulated in response to the first GnRH of Ovsynch in Ovsynch+P4 (71.9%) than PreG-Ovsynch (58.3%). At the PGF2α before TAI, more cows had a CL based on ultrasound (92.1 vs. 77.0%) and P4 concentrations were greater in PreG-Ovsynch than in Ovsynch+P4 (4.1 vs. 2.6 ng/mL); however, a similar proportion of cows had P4 >1 ng/mL (79.1 vs. 82.7%). We conclude that the Ovsynch+P4 and PreG-Ovsynch treatments for cows without a CL, a CL <15 mm, or cystic at the PGF2α injection of Resynch led to P/AI similar to that of cows with a CL ≥15 mm, and that both management strategies resulted in similar time to pregnancy.


Journal of Dairy Science | 2017

Resynchronization of ovulation protocols for dairy cows including or not including gonadotropin-releasing hormone to induce a new follicular wave: Effects on re-insemination pattern, ovarian responses, and pregnancy outcomes

R. Wijma; M.L. Stangaferro; M. Masello; G. E. Granados; J.O. Giordano

Our objectives were to evaluate the pattern of re-insemination, ovarian responses, and pregnancy per artificial insemination (P/AI) of cows submitted to different resynchronization of ovulation protocols. The base protocol started at 25 ± 3 d after artificial insemination (AI) and was as follows: GnRH, 7 and 8 d later PGF2α, GnRH 32 h after second PGF2α, and fixed timed AI (TAI) 16 to 18 h after GnRH. At 18 ± 3 d after AI, cows were randomly assigned to the G25 (n = 1,100) or NoG25 (n = 1,098) treatments. The protocol for G25 and NoG25 was the same, except that cows in NoG25 did not receive GnRH 25 ± 3 d after AI. At nonpregnancy diagnosis (NPD), 32 ± 3 d after AI, cows from G25 and NoG25 with a corpus luteum (CL) ≥15 mm in diameter and a follicle ≥10 mm completed the protocol (G25 CL = 272, NoG25 CL = 194), whereas cows from both treatments that did not meet these criteria received a modified Ovsynch protocol with P4 supplementation [controlled internal drug release insert plus GnRH, controlled internal drug release insert removal, and PGF2α 7 and 8 d later, GnRH 32 h after second PGF2α, and TAI 16 to 18 h after GnRH (G25 NoCL = 53, NoG25 NoCL = 78)]. Serum concentrations of progesterone (P4) were determined and ovarian ultrasonography was performed thrice weekly from 18 ± 3 d after AI until 1 d after TAI (G25 = 46, NoG25 = 44 cows). A greater percentage of NoG25 cows were re-inseminated at detected estrus (NoG25 = 53.5%, G25 = 44.6%), whereas more cows had a CL at NPD in G25 than NoG25 (83.7 and 71.3%). At 32 d after AI, P/AI was similar for G25 and NoG25 for inseminations at detected estrus (38.4 and 42.9%), TAI services for cows with no CL (40.4 and 36.7%), and for all services combined (39.6 and 39.0%). However, P/AI were greater for cows with a CL in G25 than NoG25 (40.6 and 32.8%) that received TAI. More cows ovulated spontaneously or in response to GnRH for the G25 than the NoG25 treatment (70 and 36%) but a similar proportion had an active follicle at NPD (G25 = 91% and NoG25 = 96%). The largest follicle diameter at NPD (G25 = 15.0 ± 0.4 mm, NoG25 = 16.5 ± 0.6 mm) and days since it reached ≥10 mm (G25 = 4.0 ± 0.3 d, NoG25 = 5.8 ± 0.6 d) were greater for the NoG25 than G25 treatment. For cows with a CL at NPD, CL regression after NPD, ovulation after TAI, and ovulatory follicle diameter did not differ. In conclusion, removing the first GnRH of a modified Resynch-25 protocol for cows with a CL at NPD and a modified Ovsynch protocol with P4 supplementation for cows without a CL at NPD resulted in a greater percentage of cows re-inseminated at detected estrus and a similar proportion of cows pregnant in spite of reduced P/AI for cows with a CL at NPD.


Journal of Dairy Science | 2018

Extending the duration of the voluntary waiting period from 60 to 88 days in cows that received timed artificial insemination after the Double-Ovsynch protocol affected the reproductive performance, herd exit dynamics, and lactation performance of dairy cows

M.L. Stangaferro; R. Wijma; M. Masello; Mark J. Thomas; J.O. Giordano

This experiment evaluated the reproductive performance, herd exit dynamics, and lactation performance of dairy cows managed with a voluntary waiting period (VWP) of 60 or 88 d. Secondary objectives were evaluating VWP effect on cyclicity status, uterine health, systemic inflammation, and body condition score (BCS) before first service. Lactating Holstein cows from 3 commercial farms in New York State cows were blocked by parity group and total milk yield in their previous lactation and then randomly assigned to VWP of 60 (VWP60; n = 1,352) or 88 (VWP88; n = 1,359) days in milk (DIM). All cows received the Double-Ovsynch protocol (GnRH-7 d-PGF2α-3 d-GnRH-7 d-GnRH-7 d-PGF2α-56 h-GnRH-16 to 20 h-timed artificial insemination; TAI) for synchronization of ovulation and TAI. For second and greater artificial insemination (AI), cows received AI after detection of estrus or the Ovsynch protocol (GnRH-7 d-PGF2α-56 h-GnRH-16 to 20 h-TAI) initiated 32 ± 3 d after AI for cows not re-inseminated at detected estrus. Cyclicity status (progesterone concentration), uterine health (vaginal discharge and uterine cytology), BCS, and systemic inflammation (haptoglobin concentration) were evaluated at baseline (33 ± 3 DIM for both treatments), beginning of the Double-Ovsynch protocol, and 10 d before TAI. Effects of treatments were assessed with multivariable statistical methods relevant for each outcome variable. Extending duration of VWP from 60 to 88 DIM increased pregnancies per AI (P/AI) to first service (VWP60 = 41%; VWP88 = 47%). Nonetheless, the greatest benefit of extending VWP on first-service P/AI was for primiparous cows (VWP60 = 46%; VWP88 = 55%), as P/AI did not differ within the multiparous cow group (VWP60 = 36%; VWP88 = 40%). Physiological status more conducive to pregnancy-characterized by improved uterine health, greater BCS, reduced systemic inflammation, and to a lesser extent more time to resume ovarian cyclicity-explained the increment in P/AI to first service. Our data also indicated that despite having greater P/AI to first service, cows with the longer VWP had delayed time to pregnancy during lactation (hazard ratio = 0.72; 95% confidence interval 0.69-0.98) and greater risk of leaving the herd, particularly for multiparous cows (hazard ratio = 1.34; 95% confidence interval 1.23-1.47). This shift in pregnancy timing led to an overall extension of the lactation length (+13 d), which resulted in greater total milk yield per lactation (+491 kg) but not greater milk yield per day of lactation. In conclusion, data from this experiment highlight the importance of considering the complex interactions between reproductive performance, herd exit dynamics, and lactation performance as well as the effects of parity at the time of defining the duration of the VWP for lactating dairy cows.


Journal of Dairy Science | 2016

Effect of extending the interval from Presynch to initiation of Ovsynch in a Presynch-Ovsynch protocol on fertility of timed artificial insemination services in lactating dairy cows

J.O. Giordano; Mark J. Thomas; G. Catucuamba; M.D. Curler; R. Wijma; M.L. Stangaferro; M. Masello

The specific objective of this study was to determine if increasing the interval between the Presynch and Ovsynch portion of the Presynch-Ovsynch protocol (Presynch: PGF2α-14 d-PGF2α and Ovsynch: GnRH-7 d-PGF2α-56 h-GnRH-16-20 h-timed artificial insemination) from 12 to 14 d would reduce the fertility of lactating dairy cows not detected in estrus after Presynch that receive timed artificial insemination (TAI). Cows from 4 commercial dairy farms (n=3,165) were blocked by parity (primiparous vs. multiparous) and randomly assigned to a 12 (PSOv14-12; n=1,566) or 14 d (PSOv14-14; n=1,599) interval between the second PGF2α (PGF) injection of Presynch (P2) and the beginning of Ovsynch. Cows detected in estrus any time between P2 and the day of the TAI were inseminated (AIED group). From a subgroup of cows (177 and 150 in PSOv14-12 and PSOv14-14, respectively), ovarian parameters and ovulation were evaluated through determination of concentrations of progesterone (P4) in blood and transrectal ultrasonography at the time of the first GnRH (GnRH1) and the PGF injection of Ovsynch. Overall, 52.8% (n=1,671) of the cows were AIED, whereas 47.2% (n=1,494) received TAI. For cows that received TAI, pregnancies per artificial insemination 39 d after artificial insemination were similar for PSOv14-12 (36.3%) and PSOv14-14 (36.0%) but were greater for primiparous (41.5%) than multiparous cows (33.6%). Pregnancy loss from 39 to 105 d after artificial insemination was similar for PSOv14-12 (4.8%) and PSOv14-14 (8.6%), for primiparous (6.4%) and multiparous cows (7.0%), but a tendency for a treatment by parity interaction was observed. Both treatments had a similar proportion of cows with a follicle ≥ 10 mm and similar follicle size at GnRH1; however, the ovulatory response to GnRH was greater for PSOv14-12 (62.2%) than PSOv14-14 (46.4%). A greater proportion of cows with a functional corpus luteum (75.3 vs. 65.6%) and greater concentrations of P4 (3.9 vs. 3.3 ng/mL) at GnRH1 in PSOv14-14 than PSOv14-12 may have compensated for the reduction in fertility expected due to reduced ovulatory response to GnRH1. We concluded that extending the interval from Presynch to Ovsynch from 12 to 14 reduced ovulatory response to GnRH1 but did not reduce the fertility of cows that received TAI when cows were inseminated in estrus after presynchronization. Thus, farms that combine AIED and TAI during the Presynch-Ovsynch protocol may use a 14-d interval between Presynch and Ovsynch to simplify their management without reducing fertility of cows receiving TAI.


Journal of Dairy Science | 2018

A resynchronization of ovulation program based on ovarian structures present at nonpregnancy diagnosis reduced time to pregnancy in lactating dairy cows

R. Wijma; M.M. Pérez; M. Masello; M.L. Stangaferro; J.O. Giordano

Our objective was to evaluate time to pregnancy after the first service postpartum and pregnancy per artificial insemination (P/AI) in dairy cows managed with 2 resynchronization of ovulation programs. After first service, lactating Holstein cows were blocked by parity (primiparous vs. multiparous) and randomly assigned to the d 32 Resynch (R32; n = 1,010) or short Resynch (SR; n = 1,000) treatments. Nonpregnancy diagnosis (NPD) was conducted 32 ± 3 d after AI by transrectal ultrasonography. Nonpregnant cows in R32 received the Ovsynch protocol: GnRH, PGF2α 7 d later, GnRH 56 h later, and timed AI (TAI) 16 to 18 h later. Cows in SR with a corpus luteum (CL) ≥15 mm and a follicle ≥10 mm at NPD received PGF2α, PGF2α 24 h later, GnRH 32 h later, and TAI 16 to 18 h later. Cows in SR without a CL ≥15 mm or a follicle ≥10 mm at NPD received a modified Ovsynch protocol with 2 PGF2α treatments and progesterone (P4) supplementation (GnRH plus CIDR, PGF2α and CIDR removal 7 d later, PGF2α 24 h later, GnRH 32 h later, and TAI 16 to 18 h later). Blood samples were collected from a subgroup of cows at the GnRH before TAI (R32 = 114; SR = 121) to measure P4 concentration. Binomial outcomes were analyzed with logistic regression and hazard of pregnancy (R32 = 485; SR = 462) with Coxs proportional regression in SAS (SAS Institute, Cary, NC). For P/AI analysis, the TAI service was the experimental unit (R32 = 720; SR = 819). Models included treatment and parity as fixed effects and farm as random effect. The hazard of pregnancy was greater for the SR treatment (hazard ratio = 1.18; 95% confidence interval: 1.01-1.37). Median time to pregnancy was 95 and 79 d for the R32 and SR treatments, respectively. At NPD, 71.3 and 71.2% of cows had a CL for the R32 and SR treatments, respectively. Treatment did not affect overall P/AI 32 ± 3 d after AI (R32 = 31.0% vs. SR = 33.9%) or for cows with a CL at NPD (R32 = 32.7% vs. SR = 32.8%). For cows with no CL at NPD, P/AI was greater for the SR treatment (36.9%) than for the R32 treatment (28.6%). Pregnancy loss from 32 to 63 d after AI was similar for all services combined (R32 = 8.3% vs. SR = 10.4%) and for cows with no CL at NPD (R32 = 13.2% vs. SR = 7.2%) but tended to be affected by treatment for cows with a CL at NPD (R32 = 6.8% vs. SR = 11.9%). Treatment affected the proportion of cows with P4 ≤0.5 ng/mL at the GnRH before TAI for all cows (R32 = 68.4% vs. SR = 81.8%), tended to have an effect among cows with a CL (R32 = 70.0% vs. SR = 81.8%), and had no effect for cows with no CL (R32 = 64.7% vs. SR = 81.8%). We concluded that the SR program reduced time to pregnancy because of a reduction of the interbreeding interval for cows with a CL at NPD and greater P/AI in cows with no CL at NPD.


Journal of Dairy Science | 2018

Economic performance of lactating dairy cows submitted for first service timed artificial insemination after a voluntary waiting period of 60 or 88 days

M.L. Stangaferro; R. Wijma; M. Masello; Mark J. Thomas; J.O. Giordano

The objective of this study was to evaluate the economic performance of dairy cows managed with a voluntary waiting period (VWP) of 60 or 88 d. A secondary objective was estimating variation in cash flow under different input pricing scenarios through stochastic Monte Carlo simulations. Lactating Holstein cows from 3 commercial farms were blocked by parity group and total milk yield in their previous lactation and then randomly assigned to a VWP of 60 (VWP60; n = 1,352) or 88 d (VWP88; n = 1,359). All cows received timed-artificial insemination (TAI) for first service after synchronization of ovulation with the Double-Ovsynch protocol. For second and greater services, cows received artificial insemination (AI) after detection of estrus or the Ovsynch protocol initiated 32 ± 3 d after AI. Two analyses were performed: (1) cash flow per cow for the calving interval of the experimental lactation and (2) cash flow per slot occupied by each cow enrolled in the experiment for an 18-mo period after calving in the experimental lactation. Extending the VWP from 60 to 88 d delayed time to pregnancy during lactation (∼20 d) and increased the risk of leaving the herd for multiparous cows (hazard ratio = 1.21). As a result, a smaller proportion of multiparous cows calved again and had a subsequent lactation (-6%). The shift in time to pregnancy combined with the herd exit dynamics resulted in longer lactation length for primiparous (22 d) but not multiparous cows. Longer lactations led to greater milk income over feed cost and a tendency for greater cash flow during the experimental lactation for primiparous but not multiparous cows in the VWP88 group. On the other hand, profitability per slot for the 18-mo period was numerically greater (


Journal of Dairy Science | 2018

Reproductive performance and herd exit dynamics of lactating dairy cows managed for first service with the Presynch-Ovsynch or Double-Ovsynch protocol and different duration of the voluntary waiting period

M.L. Stangaferro; R. Wijma; M. Masello; J.O. Giordano

68 slot/18 mo) for primiparous cows but numerically reduced (-

Collaboration


Dive into the R. Wijma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge