Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rabi Upadhyay is active.

Publication


Featured researches published by Rabi Upadhyay.


Nature Medicine | 2008

Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers.

Jeffrey A. Engelman; Liang Chen; Xiaohong Tan; Katherine Crosby; Alexander R. Guimaraes; Rabi Upadhyay; S. Michel Maira; Kate McNamara; Samanthi A. Perera; Youngchul Song; Lucian R. Chirieac; Ramneet Kaur; Angela Lightbown; Jessica Simendinger; Timothy Q. Li; Robert F. Padera; Carlos Garcia-Echeverria; Ralph Weissleder; Umar Mahmood; Lewis C. Cantley; Kwok-Kin Wong

Somatic mutations that activate phosphoinositide 3-kinase (PI3K) have been identified in the p110-α catalytic subunit (encoded by PIK3CA). They are most frequently observed in two hotspots: the helical domain (E545K and E542K) and the kinase domain (H1047R). Although the p110-α mutants are transforming in vitro, their oncogenic potential has not been assessed in genetically engineered mouse models. Furthermore, clinical trials with PI3K inhibitors have recently been initiated, and it is unknown if their efficacy will be restricted to specific, genetically defined malignancies. In this study, we engineered a mouse model of lung adenocarcinomas initiated and maintained by expression of p110-α H1047R. Treatment of these tumors with NVP-BEZ235, a dual pan–PI3K and mammalian target of rapamycin (mTOR) inhibitor in clinical development, led to marked tumor regression as shown by positron emission tomography–computed tomography, magnetic resonance imaging and microscopic examination. In contrast, mouse lung cancers driven by mutant Kras did not substantially respond to single-agent NVP-BEZ235. However, when NVP-BEZ235 was combined with a mitogen-activated protein kinase kinase (MEK) inhibitor, ARRY-142886, there was marked synergy in shrinking these Kras-mutant cancers. These in vivo studies suggest that inhibitors of the PI3K-mTOR pathway may be active in cancers with PIK3CA mutations and, when combined with MEK inhibitors, may effectively treat KRAS mutated lung cancers.


Angewandte Chemie | 2009

Fast and Sensitive Pretargeted Labeling of Cancer Cells through a Tetrazine/trans-Cyclooctene Cycloaddition†

Neal K. Devaraj; Rabi Upadhyay; Jered B. Haun; Scott A. Hilderbrand; Ralph Weissleder

There is considerable interest in the use of bioorthogonal covalent chemistry such as “click” chemistries to label small molecules located on live or fixed cells.[1] Such labeling has been used for the visualization of glycans, activity based protein profiling, site-specific tagging of proteins, detection of DNA and RNA synthesis, revealing the fate of small molecules in plants, and detection of post-translational modification in proteins.[2-4] Most reported applications rely on either the copper catalyzed azide-alkyne cycloaddition, which is limited to in vitro application due to the cytotoxicity of copper, or the elegant strain-promoted azide-alkyne cycloaddition, which permits live cell and in vivo application use but is hindered by relatively slow kinetics and often difficult synthesis of cyclooctyne derivatives.[4-5] New bioorthogonal reactions that do not require catalyst and show rapid kinetics are therefore of interest for different molecular imaging applications at the cellular level. In this report we demonstrate the use of inverse electron demand Diels-Alder cycloaddition between a serum stable 1,2,4,5 tetrazine and a highly strained trans-cyclooctene to covalently label live cells. This chemistry has been applied to the pretargeted labeling of Cetuximab (Erbitux) tagged epidermal growth factor receptor (EGFR) on A549 cancer cells. We find that the tetrazine cycloaddition to trans-cyclooctene labeled cells is fast and can be amplified by increasing the loading of dienophile on the antibody. This results in a highly sensitive targeting strategy that can be used to label proteins using nanomolar concentrations of a secondary agent for short durations of time.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Accurate measurement of pancreatic islet β-cell mass using a second-generation fluorescent exendin-4 analog

Thomas Reiner; Jason L. Gaglia; Claudio Vinegoni; Chong Wee Liew; Rabi Upadhyay; Rainer H. Kohler; Li Li; Rohit N. Kulkarni; Christophe Benoist; Diane Mathis; Ralph Weissleder

The hallmark of type 1 diabetes is autoimmune destruction of the insulin-producing β-cells of the pancreatic islets. Autoimmune diabetes has been difficult to study or treat because it is not usually diagnosed until substantial β-cell loss has already occurred. Imaging agents that permit noninvasive visualization of changes in β-cell mass remain a high-priority goal. We report on the development and testing of a near-infrared fluorescent β-cell imaging agent. Based on the amino acid sequence of exendin-4, we created a neopeptide via introduction of an unnatural amino acid at the K12 position, which could subsequently be conjugated to fluorophores via bioorthogonal copper-catalyzed click-chemistry. Cell assays confirmed that the resulting fluorescent probe (E4×12-VT750) had a high binding affinity (∼3 nM). Its in vivo properties were evaluated using high-resolution intravital imaging, histology, whole-pancreas visualization, and endoscopic imaging. According to intravital microscopy, the probe rapidly bound to β-cells and, as demonstrated by confocal microscopy, it was internalized. Histology of the whole pancreas showed a close correspondence between fluorescence and insulin staining, and there was an excellent correlation between imaging signals and β-cell mass in mice treated with streptozotocin, a β-cell toxin. Individual islets could also be visualized by endoscopic imaging. In short, E4×12-VT750 showed strong and selective binding to glucose-like peptide-1 receptors and permitted accurate measurement of β-cell mass in both diabetic and nondiabetic mice. This near-infrared imaging probe, as well as future radioisotope-labeled versions of it, should prove to be important tools for monitoring diabetes, progression, and treatment in both experimental and clinical contexts.


Journal of Clinical Investigation | 2008

Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation.

Virna Cortez-Retamozo; Filip K. Swirski; Peter Waterman; Hushan Yuan; Jose-Luiz Figueiredo; Andita Newton; Rabi Upadhyay; Claudio Vinegoni; Rainer H. Kohler; Joseph Blois; Adam Smith; Matthias Nahrendorf; Lee Josephson; Ralph Weissleder; Mikael J. Pittet

Eosinophils are multifunctional leukocytes that degrade and remodel tissue extracellular matrix through production of proteolytic enzymes, release of proinflammatory factors to initiate and propagate inflammatory responses, and direct activation of mucus secretion and smooth muscle cell constriction. Thus, eosinophils are central effector cells during allergic airway inflammation and an important clinical therapeutic target. Here we describe the use of an injectable MMP-targeted optical sensor that specifically and quantitatively resolves eosinophil activity in the lungs of mice with experimental allergic airway inflammation. Through the use of real-time molecular imaging methods, we report the visualization of eosinophil responses in vivo and at different scales. Eosinophil responses were seen at single-cell resolution in conducting airways using near-infrared fluorescence fiberoptic bronchoscopy, in lung parenchyma using intravital microscopy, and in the whole body using fluorescence-mediated molecular tomography. Using these real-time imaging methods, we confirmed the immunosuppressive effects of the glucocorticoid drug dexamethasone in the mouse model of allergic airway inflammation and identified a viridin-derived prodrug that potently inhibited the accumulation and enzyme activity of eosinophils in the lungs. The combination of sensitive enzyme-targeted sensors with noninvasive molecular imaging approaches permitted evaluation of airway inflammation severity and was used as a model to rapidly screen for new drug effects. Both fluorescence-mediated tomography and fiberoptic bronchoscopy techniques have the potential to be translated into the clinic.


Gynecologic Oncology | 2009

Improved detection of ovarian cancer metastases by intraoperative quantitative fluorescence protease imaging in a pre-clinical model

Rahul A. Sheth; Rabi Upadhyay; Lars Stangenberg; Rucha Sheth; Ralph Weissleder; Umar Mahmood

OBJECTIVES Cytoreductive surgery is a cornerstone of therapy in metastatic ovarian cancer. While conventional white light (WL) inspection detects many obvious tumor foci, careful histologic comparison has shown considerable miss rates for smaller foci. The goal of this study was to compare tumor detection using WL versus near infrared (NIR) imaging with a protease activatable probe, as well as to evaluate the ability to quantify NIR fluorescence using a novel quantitative optical imaging system. METHODS A murine model for peritoneal carcinomatosis was generated and metastatic foci were imaged using WL and NIR imaging following the i.v. administration of the protease activatable probe ProSense750. The presence of tumor was confirmed by histology. Additionally, the ability to account for variations in fluorescence signal intensity due to changes in distance between the catheter and target lesion during laparoscopic procedures was evaluated. RESULTS NIR imaging with a ProSense750 significantly improved upon the target-to-background ratios (TBRs) of tumor foci in comparison to WL imaging (minimum improvement was approximately 3.5 fold). Based on 52 histologically validated samples, the sensitivity for WL imaging was 69%, while the sensitivity for NIR imaging was 100%. The effects of intraoperative distance changes upon fluorescence intensity were corrected in realtime, resulting in a decrease from 89% to 5% in signal variance during fluorescence laparoscopy. CONCLUSIONS With its molecular specificity, low background autofluorescence, high TBRs, and quantitative signal, optical imaging with NIR protease activatable probes greatly improves upon the intraoperative detection of ovarian cancer metastases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut.

Angela M. Morton; Esen Sefik; Rabi Upadhyay; Ralph Weissleder; Christophe Benoist; Diane Mathis

Significance Gut-microbiota/immune-cell interactions play important roles in immune system homeostasis and responsiveness, but surprisingly little is known about the movement of immune cells into and, particularly, out of the gut. We used a minimally invasive system to monitor immigration of diverse innate and adaptive immune-cell types to the intestine from a distant lymph node, and a novel endoscopic adaptation of the system to follow their emigration from the distal colon to nearby and distal lymphoid organs. We uncovered an unexpectedly broad movement of leukocytes to and from the gut at steady state, as well as subset-specific migration proclivities. Moreover, we evidenced a critical cellular link between an intestinal microbe, segmented filamentous bacteria, and an extraintestinal autoinflammatory disease, the K/BxN model of arthritis. Given mounting evidence of the importance of gut-microbiota/immune-cell interactions in immune homeostasis and responsiveness, surprisingly little is known about leukocyte movements to, and especially from, the gut. We address this topic in a minimally perturbant manner using Kaede transgenic mice, which universally express a photoconvertible fluorescent reporter. Transcutaneous exposure of the cervical lymph nodes to violet light permitted punctual tagging of immune cells specifically therein, and subsequent monitoring of their immigration to the intestine; endoscopic flashing of the descending colon allowed specific labeling of intestinal leukocytes and tracking of their emigration. Our data reveal an unexpectedly broad movement of leukocyte subsets to and from the gut at steady state, encompassing all lymphoid and myeloid populations examined. Nonetheless, different subsets showed different trafficking proclivities (e.g., regulatory T cells were more restrained than conventional T cells in their exodus from the cervical lymph nodes). The novel endoscopic approach enabled us to evidence gut-derived Th17 cells in the spleens of K/BxN mice at the onset of their genetically determined arthritis, thereby furnishing a critical mechanistic link between the intestinal microbiota, namely segmented filamentous bacteria, and an extraintestinal autoinflammatory disease.


Radiology | 2008

Human Breast Cancer Tumor Models: Molecular Imaging of Drug Susceptibility and Dosing during HER2/neu-targeted Therapy

Michael S. Gee; Rabi Upadhyay; Henry Bergquist; Herlen Alencar; Fred Reynolds; Marco Maricevich; Ralph Weissleder; Lee Josephson; Umar Mahmood

PURPOSE To use near-infrared (NIR) optical imaging to assess the therapeutic susceptibility and drug dosing of orthotopic human breast cancers implanted in mice treated with molecularly targeted therapy. MATERIALS AND METHODS This study was approved by the institutional animal care and use committee. Imaging probes were synthesized by conjugating the human epidermal growth factor receptor type 2 (HER2)-specific antibody trastuzumab with fluorescent dyes. In vitro probe binding was assessed with flow cytometry. HER2-normal and HER2-overexpressing human breast cancer cells were orthotopically implanted in nude mice. Intravital laser scanning fluorescence microscopy was used to evaluate the in vivo association of the probe with the tumor cells. Mice bearing 3-5-mm-diameter tumors were intravenously injected with 0.4 nmol of HER2 probe before or after treatment. A total of 123 mice were used for all in vivo tumor growth and imaging experiments. Tumor fluorescence intensity was assessed, and standard fluorescence values were determined. Statistical significance was determined by performing standard analysis of variance across the imaging cohorts. RESULTS HER2 probe enabled differentiation between HER2-normal and HER2-overexpressing human breast cancer cells in vitro and in vivo, with binding levels correlating with tumor trastuzumab susceptibility. Serial imaging before and during trastuzumab therapy revealed a significant reduction (P < .05) in probe binding with treatment and thus provided early evidence of successful HER2 inhibition days before the overall reduction in tumor growth was apparent. CONCLUSION NIR imaging with HER2-specific imaging probes enables evaluation of the therapeutic susceptibility of human mammary tumors and of drug dosing during HER2-targeted therapy with trastuzumab. This approach, combined with tomographic imaging techniques, has potential in the clinical setting for determining patient eligibility for and adequate drug dosing in molecularly targeted cancer therapies.


Clinical Cancer Research | 2008

Regression of Drug-Resistant Lung Cancer by the Combination of Rosiglitazone and Carboplatin

Geoffrey D. Girnun; Liang Chen; Jessica M. Silvaggi; Ronny Drapkin; Lucian R. Chirieac; Robert F. Padera; Rabi Upadhyay; Scott Vafai; Ralph Weissleder; Umar Mahmood; Elnaz Naseri; Stephanie Buckley; Danan Li; Jeremy Force; Kate McNamara; George D. Demetri; Bruce M. Spiegelman; Kwok-Kin Wong

Purpose: Current therapy for lung cancer involves multimodality therapies. However, many patients are either refractory to therapy or develop drug resistance. KRAS and epidermal growth factor receptor (EGFR) mutations represent some of the most common mutations in lung cancer, and many studies have shown the importance of these mutations in both carcinogenesis and chemoresistance. Genetically engineered murine models of mutant EGFR and KRAS have been developed that more accurately recapitulate human lung cancer. Recently, using cell-based experiments, we showed that platinum-based drugs and the antidiabetic drug rosiglitazone (PPARγ ligand) interact synergistically to reduce cancer cell and tumor growth. Here, we directly determined the efficacy of the PPARγ/carboplatin combination in these more relevant models of drug resistant non–small cell lung cancer. Experimental Design: Tumorigenesis was induced by activation of either mutant KRAS or EGFR. Mice then received either rosiglitazone or carboplatin monotherapy, or a combination of both drugs. Change in tumor burden, pathology, and evidence of apoptosis and cell growth were assessed. Results: Tumor burden remained unchanged or increased in the mice after monotherapy with either rosiglitazone or carboplatin. In striking contrast, we observed significant tumor shrinkage in mice treated with these drugs in combination. Immunohistochemical analyses showed that this synergy was mediated via both increased apoptosis and decreased proliferation. Importantly, this synergy between carboplatin and rosiglitazone did not increase systemic toxicity. Conclusions: These data show that the PPARγ ligand/carboplatin combination is a new therapy worthy of clinical investigation in lung cancers, including those cancers that show primary resistance to platinum therapy or acquired resistance to targeted therapy.


ChemistryOpen | 2012

Efficient 18F‐Labeling of Synthetic Exendin‐4 Analogues for Imaging Beta Cells

Edmund J. Keliher; Thomas Reiner; Rabi Upadhyay; Ralph Weissleder

A number of exendin derivatives have been developed to target glucagon-like peptide 1 (GLP-1) receptors on beta cells in vivo. Modifications of exendin analogues have been shown to have significant effects on pharmacokinetics and, as such, have been used to develop a variety of therapeutic compounds. Here, we show that an exendin-4, modified at position 12 with a cysteine conjugated to a tetrazine, can be labeled with 18F-trans-cyclooctene and converted into a PET imaging agent at high yields and with good selectivity. The agent accumulates in beta cells in vivo and has sufficiently high accumulation in mouse models of insulinomas to enable in vivo imaging.


Molecular and Cellular Biology | 2006

N-cadherin and keratinocyte growth factor receptor mediate the functional interplay between Ki-RASG12V and p53V143A in promoting pancreatic cell migration, invasion, and tissue architecture disruption.

Therese B. Deramaudt; Munenori Takaoka; Rabi Upadhyay; Mark Bowser; Jess Porter; Amy Lee; Ben Rhoades; Cameron N. Johnstone; Ralph Weissleder; Sunil R. Hingorani; Umar Mahmood; Anil K. Rustgi

ABSTRACT The genetic basis of pancreatic ductal adenocarcinoma, which constitutes the most common type of pancreatic malignancy, involves the sequential activation of oncogenes and inactivation of tumor suppressor genes. Among the pivotal genetic alterations are Ki-RAS oncogene activation and p53 tumor suppressor gene inactivation. We explain that the combination of these genetic events facilitates pancreatic carcinogenesis as revealed in novel three-dimensional cell (spheroid cyst) culture and in vivo subcutaneous and orthotopic xenotransplantation models. N-cadherin, a member of the classic cadherins important in the regulation of cell-cell adhesion, is induced in the presence of Ki-RAS mutation but subsequently downregulated with the acquisition of p53 mutation as revealed by gene microarrays and corroborated by reverse transcription-PCR and Western blotting. N-cadherin modulates the capacity of pancreatic ductal cells to migrate and invade, in part via complex formation with keratinocyte growth factor receptor and neural cell adhesion molecule and in part via interaction with p120-catenin. However, modulation of these complexes by Ki-RAS and p53 leads to enhanced cell migration and invasion. This preferentially induces the downstream effector AKT over mitogen-activated protein kinase to execute changes in cellular behavior. Thus, we are able to define molecules that in part are directly affected by Ki-RAS and p53 during pancreatic ductal carcinogenesis, and this provides a platform for potential new molecularly based therapeutic interventions.

Collaboration


Dive into the Rabi Upadhyay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rahul A. Sheth

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge