Rabih S. Talhouk
American University of Beirut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rabih S. Talhouk.
Cell Communication and Signaling | 2009
Hashem A. Dbouk; Rana M Mroue; Marwan El-Sabban; Rabih S. Talhouk
Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Catherine C. Park; Rhonda L. Henshall-Powell; Anna C. Erickson; Rabih S. Talhouk; Bahram Parvin; Mina J. Bissell; Mary Helen Barcellos-Hoff
Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell–cell communication, aberrant cell–extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.
Journal of Cell Science | 2003
Marwan El-Sabban; Agnel Sfeir; Myriam H. Daher; Nada Y. Kalaany; Rola Bassam; Rabih S. Talhouk
The relationship between gap junctional intercellular communication (GJIC) and mammary cell (CID-9) differentiation in vitro was explored. CID-9 cells differentiate and express β-casein in an extracellular matrix (ECM)- and hormone-dependent manner. In response to interaction with the ECM, cells in culture modulated the expression of their gap junction proteins at the transcriptional and post-translational levels. In the presence of EHS-matrix, connexins (Cx)26, 32 and 43 localized predominantly to the plasma membrane, and enhanced GJIC [as measured by Lucifer Yellow (LY) dye transfer assays] was noted. Inhibition of GJIC of cells on EHS-matrix with 18α glycyrrhetinic acid (GA) resulted in reversible downregulation of β-casein expression. In the presence of cAMP, cells cultured on plastic expressed β-casein, upregulated Cx43 and Cx26 protein levels and enhanced GJIC. This was reversed in the presence of 18α GA. cAMP-treated cells plated either on a non-adhesive PolyHEMA substratum or on plastic supplemented with function-blocking anti-β1 integrin antibodies, maintainedβ -casein expression. These studies suggest that cell-ECM interaction alone may induce differentiation through changes in cAMP levels and formation of functional gap junctions. That these events are downstream of ECM signalling was underscored by the fact that enhanced GJIC induced partial differentiation in mammary epithelial cells in the absence of an exogenously provided basement membrane and in a β1-integrin- and adhesion-independent manner.
Experimental Cell Research | 2008
Rabih S. Talhouk; Rana Mroue; Mayssa Mokalled; Lina F. Abi-Mosleh; Ralda Nehme; Ayman Ismail; Antoine Khalil; Mira Zaatari; Marwan El-Sabban
Gap junctions (GJ) are required for mammary epithelial differentiation. Using epithelial (SCp2) and myoepithelial-like (SCg6) mouse-derived mammary cells, the role of heterocellular interaction in assembly of GJ complexes and functional differentiation (beta-casein expression) was evaluated. Heterocellular interaction is critical for beta-casein expression, independent of exogenous basement membrane or cell anchoring substrata. Functional differentiation of SCp2, co-cultured with SCg6, is more sensitive to GJ inhibition relative to homocellular SCp2 cultures differentiated by exogenous basement membrane. Connexin (Cx)32 and Cx43 levels were not regulated across culture conditions; however, GJ functionality was enhanced under differentiation-permissive conditions. Immunoprecipitation studies demonstrated association of junctional complex components (alpha-catenin, beta-catenin and ZO-2) with Cx32 and Cx43, in differentiation conditions, and additionally with Cx30 in heterocellular cultures. Although beta-catenin did not shuttle between cadherin and GJ complexes, increased association between connexins and beta-catenin in heterocellular cultures was observed. This was concomitant with reduced nuclear beta-catenin, suggesting that differentiation in heterocellular cultures involves sequestration of beta-catenin in GJ complexes.
Cancer Research | 2004
Ali Bazarbachi; Raghida Abou Merhi; Antoine Gessain; Rabih S. Talhouk; Hilda El-Khoury; Rihab Nasr; Olivier Gout; Rita Sulahian; Fadia R. Homaidan; Olivier Hermine; Marwan El-Sabban
Extravasation of tumor cells through the endothelial barrier is a critical step in cancer metastasis. Human T-cell lymphotropic virus type I (HTLV-I)-associated adult T-cell leukemia/lymphoma (ATL) is an aggressive disease characterized by visceral invasion. We show that ATL and HTLV-I-associated myelopathy patients exhibit high plasma levels of functional vascular endothelial growth factor and basic fibroblast growth factor. The viral oncoprotein Tax transactivates the promoter of the gap-junction protein connexin-43 and enhances gap-junction-mediated heterocellular communication with endothelial cells. The interaction of HTLV-I-transformed cells with endothelial cells induces the gelatinase activity of matrix metalloproteinase (MMP)-2 and MMP-9 in endothelial cells and down-regulates the tissue inhibitor of MMP. This leads to subendothelial basement membrane degradation followed by endothelial cell retraction, allowing neoplastic lymphocyte extravasation. We propose a model that offers a mechanistic explanation for extravasation of HTLV-I-infected cells: after specific adhesion to endothelia of target organs, tumor cells induce a local and transient angiogenesis-like mechanism through paracrine stimulation and direct cell-cell communication with endothelial cells. This culminates in a breach of the endothelial barrier function, allowing cancer cell invasion. This local and transient angiogenesis-like sequence that may facilitate visceral invasion in ATL represents a potential target for ATL therapy.
Journal of Mammary Gland Biology and Neoplasia | 2003
Marwan El-Sabban; Lina F. Abi-Mosleh; Rabih S. Talhouk
Gap junctions play a critical role in the development and differentiation of many tissues. Formed by the joining of two connexons on opposing membranes of two cells, gap junctions permit passage of ions and small molecules. Six connexins (Cx) belonging to a family of closely related tetraspan transmembrane proteins form a connexon. Connexin expression peaks in lactation, and those identified in the gland, thus far, are Cx26, Cx30, Cx32, and Cx43. Cx43 associates with myoepithelial cells, while others associate with epithelial and ductular cells. In vitro, assembly of functional gap junctions appears to be essential for differentiation of mammary epithelial cells. However, the role of gap junction intercellular communication (GJIC) in differentiation and growth remains unclear. Recent evidence challenges the view that gap junctions are simply pore-forming proteins and suggests that cell adhesion-associated proteins interact with the cytosolic carboxy-terminus of connexins and participate in signaling events. The possible implications on mammary cell function are discussed.
Cell and Tissue Research | 2005
Rabih S. Talhouk; Randolph C. Elble; Rola Bassam; Mariam Daher; Agnel Sfeir; Lina Abi Mosleh; Hilda El-Khoury; Samar Hamoui; Bendicht U. Pauli; Marwan El-Sabban
The mammary gland reaches a fully differentiated phenotype at lactation, a stage characterized by the abundant expression of β-casein. We have investigated the expression and regulation of gap junction proteins (connexins, Cx) during the various developmental stages of mouse mammary gland. Immunohistochemical analysis, with specific antibodies, reveals that Cx26 and Cx32 are expressed and confined to the cell borders of luminal epithelial cells in all developmental stages of the gland. Cx26 and Cx32 expression, at the mRNA and protein levels, increases in pregnancy and peaks in lactation. Whereas Cx43 mRNA decreases in pregnancy and lactation, the functional activity of Cx43 protein, which has been localized to myoepithelial cells, is regulated (through phosphorylation) during pregnancy and peaks during lactation. Cx30 mRNA and proteins have, for the first time, been detected in mammary gland epithelia. Using reverse transcription/polymerase chain reaction and sequencing techniques, we show that Cx30 is abundant in pregnant and lactating mammary gland. Cx30 protein levels have not been detected in the mammary gland prior to day 15 of pregnancy, whereas maximum expression occurs at the onset of lactation. In mouse mammary cells in culture, Cx30 is epithelial-cell-specific and is induced by lactogenic hormones. These data identify a novel player in mammary differentiation and suggest a potential role for Cx30 in the fully differentiated gland.
Integrative Biology | 2011
R. M. Mroue; Marwan El-Sabban; Rabih S. Talhouk
Gap junctions (GJ) can no longer be thought of as simple channel forming structures that mediate intercellular communication. Hemi-channel and channel-independent functions of connexins (Cxs) have been described and numerous Cx interacting partners have been uncovered ranging from enzymes to structural and scaffolding molecules to transcription factors. With the growing number of Cx partners and functions, including well-documented roles for Cxs as conditional tumor suppressors, it has become essential to understand how Cxs are regulated in a context-dependent manner to mediate distinct functions. In this review we will shed light on the tissue and context-dependent regulation and function of Cxs and on the importance of Cx-interactions in modulating tissue-specific function. We will emphasize how the context-dependent functions of Cxs can help in understanding the impact of Cx mis-expression on cancer development and, ultimately, explore whether Cxs can be used as potential therapeutic targets in cancer treatment. In the end, we will address the need for developing relevant assays for studying Cx and GJ functions and will highlight how advances in bioengineering tools and the design of 3D biological platforms can help studying gap junction function in real time in a non-intrusive manner.
Tissue & Cell | 1993
Rabih S. Talhouk; Ronald L. Neiswander; Floyd L. Schanbacher
Cryopreserved bovine mammary epithelial cells prepared from lactating mammary tissue synthesize and secrete the milk proteins alpha s1-casein, lactoferrin (Lf), and alpha-lactalbumin during in vitro culture on collagen gels in serum-free medium. Each milk protein is differently regulated by detachment and thickness of the collagen substratum, fetal calf serum, and prolactin in the medium. Collagen detachment did not modulate lactoferrin secretion but strongly induced casein secretion, with detachment on day 6 (after formation of cell sheets) inducing casein secretion to 3 micrograms/ml medium, which was 2-3-fold higher than for cells on collagen detached on day 2 (prior to cell spreading to form sheets), and ten-fold higher than for cells grown on collagen not detached. Alpha-lactalbumin secretion was also induced, but only to low levels, in cells grown on detached but not on attached collagen. Cells grown on thin collagen gels secreted lower levels of lactoferrin and casein compared to cells on thick collagen. Lactoferrin but not casein secretion was increased in cells grown in the presence of fetal calf serum. Casein but not lactoferrin secretion was completely dependent on prolactin. Cells grown serum-free on collagen gels detached on day 6 of culture showed a polarized epithelial cell layer with high differentiation evidenced by the apical microvilli, tight junctions, and fat droplets surrounded by casein-containing secretory vesicles. An underlying layer of myoepithelial-like cells was also evident. These studies show for cryopreserved primary bovine mammary cells prepared from lactating mammary tissue the induction of highly differentiated and polarized cell morphology and ultrastructure with concomitant induction of the secretion of casein, lactoferrin, and alpha-lactalbumin in vitro, and that the non-coordinate regulation of milk protein secretion by substratum, prolactin, and serum likely involves alternate routing and control of secretion pathways for casein and lactoferrin.
Experimental Cell Research | 2013
Rabih S. Talhouk; Mohamed-Bilal Fares; Gilbert J. Rahme; Hanaa H. Hariri; Tina Rayess; Hashem A. Dbouk; Dana Bazzoun; Dania Al-Labban; Marwan El-Sabban
Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus.