Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachael A. Bay is active.

Publication


Featured researches published by Rachael A. Bay.


Science | 2014

Mechanisms of Reef Coral Resistance to Future Climate Change

Stephen R. Palumbi; Daniel J. Barshis; Nikki Traylor-Knowles; Rachael A. Bay

Reef corals are highly sensitive to heat, yet populations resistant to climate change have recently been identified. To determine the mechanisms of temperature tolerance, we reciprocally transplanted corals between reef sites experiencing distinct temperature regimes and tested subsequent physiological and gene expression profiles. Local acclimatization and fixed effects, such as adaptation, contributed about equally to heat tolerance and are reflected in patterns of gene expression. In less than 2 years, acclimatization achieves the same heat tolerance that we would expect from strong natural selection over many generations for these long-lived organisms. Our results show both short-term acclimatory and longer-term adaptive acquisition of climate resistance. Adding these adaptive abilities to ecosystem models is likely to slow predictions of demise for coral reef ecosystems. The coral Acropora hyacinthus is capable of rapid acclimation to high temperatures [Also see Perspective by Eakin] Hot and bothered corals can cope How well can corals adapt to temperature extremes? Better than anticipated, it turns out. Corals from reef pools with wide temperature fluctuations resist stress better than corals from less extreme pools. Nevertheless, corals transplanted into the hotter and more variable conditions soon acquired thermal tolerance. Palumbi et al. (see the Perspective by Eakin) found that the tougher specimens produced more of certain proteins, such as the tumor necrosis factor receptor superfamily, which protected them from the effects of heat. Ramping up heat shock and transport proteins yielded heat tolerance far more rapidly than mutation and adaptation. Hopefully, this ability will allow some mitigation of climate change on coral reefs. Science, this issue p. 895; see also p. 798.


Current Biology | 2014

Multilocus Adaptation Associated with Heat Resistance in Reef-Building Corals

Rachael A. Bay; Stephen R. Palumbi

The evolution of tolerance to future climate change depends on the standing stock of genetic variation for resistance to climate-related impacts, but genes contributing to climate tolerance in wild populations are poorly described in number and effect. Physiology and gene expression patterns have shown that corals living in naturally high-temperature microclimates are more resistant to bleaching because of both acclimation and fixed effects, including adaptation. To search for potential genetic correlates of these fixed effects, we genotyped 15,399 single nucleotide polymorphisms (SNPs) in 23 individual tabletop corals, Acropora hyacinthus, within a natural temperature mosaic in backreef lagoons on Ofu Island, American Samoa. Despite overall lack of population substructure, we identified 114 highly divergent SNPs as candidates for environmental selection, via multiple stringent outlier tests, and correlations with temperature. Corals from the warmest reef location had higher minor allele frequencies across these candidate SNPs, a pattern not seen for noncandidate loci. Furthermore, within backreef pools, colonies in the warmest microclimates had a higher number and frequency of alternative alleles at candidate loci. These data suggest mild selection for alternate alleles at many loci in these corals during high heat episodes and possible maintenance of extensive polymorphism through multilocus balancing selection in a heterogeneous environment. In this case, a natural population harbors a reservoir of alleles preadapted to high temperatures, suggesting potential for future evolutionary response to climate change.


Genome Biology and Evolution | 2015

Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals

Rachael A. Bay; Stephen R. Palumbi

Population response to environmental variation involves adaptation, acclimation, or both. For long-lived organisms, acclimation likely generates a faster response but is only effective if the rates and limits of acclimation match the dynamics of local environmental variation. In coral reef habitats, heat stress from extreme ocean warming can occur over several weeks, resulting in symbiont expulsion and widespread coral death. However, transcriptome regulation during short-term acclimation is not well understood. We examined acclimation during a 11-day experiment in the coral Acropora nana. We acclimated colonies to three regimes: ambient temperature (29 °C), increased stable temperature (31 °C), and variable temperature (29–33 °C), mimicking local heat stress conditions. Within 7–11 days, individuals acclimated to increased temperatures had higher tolerance to acute heat stress. Despite physiological changes, no gene expression changes occurred during acclimation before acute heat stress. However, we found strikingly different transcriptional responses to heat stress between acclimation treatments across 893 contigs. Across these contigs, corals acclimated to higher temperatures (31 °C or 29–33 °C) exhibited a muted stress response—the magnitude of expression change before and after heat stress was less than in 29 °C acclimated corals. Our results show that corals have a rapid phase of acclimation that substantially increases their heat resilience within 7 days and that alters their transcriptional response to heat stress. This is in addition to a previously observed longer term response, distinguishable by its shift in baseline expression, under nonstressful conditions. Such rapid acclimation may provide some protection for this species of coral against slow onset of warming ocean temperatures.


The American Naturalist | 2017

Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures

Rachael A. Bay; Noah H. Rose; Rowan D. H. Barrett; Louis Bernatchez; Cameron K. Ghalambor; Jesse R. Lasky; Rachel B. Brem; Stephen R. Palumbi; Peter Ralph

Rapid environmental change currently presents a major threat to global biodiversity and ecosystem functions, and understanding impacts on individual populations is critical to creating reliable predictions and mitigation plans. One emerging tool for this goal is high-throughput sequencing technology, which can now be used to scan the genome for signs of environmental selection in any species and any system. This explosion of data provides a powerful new window into the molecular mechanisms of adaptation, and although there has been some success in using genomic data to predict responses to selection in fields such as agriculture, thus far genomic data are rarely integrated into predictive frameworks of future adaptation in natural populations. Here, we review both theoretical and empirical studies of adaptation to rapid environmental change, focusing on areas where genomic data are poised to contribute to our ability to estimate species and population persistence and adaptation. We advocate for the need to study and model evolutionary response architectures, which integrate spatial information, fitness estimates, and plasticity with genetic architecture. Understanding how these factors contribute to adaptive responses is essential in efforts to predict the responses of species and ecosystems to future environmental change.


Journal of Molecular Evolution | 2011

Recombination detection under evolutionary scenarios relevant to functional divergence.

Rachael A. Bay; Joseph P. Bielawski

Recombination can negatively impact methods designed to detect divergent gene function that rely on explicit knowledge of a gene tree. However, we know little about how recombination detection methods perform under evolutionary scenarios encountered in studies of functional molecular divergence. We use simulation to evaluate false positive rates for six recombination detection methods (GENECONV, MaxChi, Chimera, RDP, GARD-SBP, GARD-MBP) under evolutionary scenarios that might increase false positives. Broadly, these scenarios address: (i) asymmetric tree topology and sequence divergence, (ii) non-stationary codon bias and selection pressure, and (iii) positive selection. We also evaluate power to detect recombination under truly recombinant history. As with previous studies, we find that power increases with sequence divergence. However, we also find that accuracy to correctly infer the number of breakpoints is extremely low. When recombination is absent, increased sequence divergence leads to increased false positives. Furthermore, one method (GARD-SBP) is sensitive to tree shape, with higher false positive rates under an asymmetric tree topology. Somewhat surprisingly, all methods are robust to the simulated heterogeneity in codon bias, shifts in selection pressure and presence of positive selection. Based on these findings, we recommend that studies of functional divergence in systems where recombination is plausible can, and should, include a pre-test for recombination. Application of all methods to the core genome of Prochlorococcus reveals a substantial lack of concordance among results. Based on analysis of both real and simulated datasets we present some guidelines for the investigation of recombination in genes that may have experienced functional divergence.


Science Advances | 2017

Genomic models predict successful coral adaptation if future ocean warming rates are reduced

Rachael A. Bay; Noah H. Rose; Cheryl Logan; Stephen R. Palumbi

Population genomic simulations predict coral adaptation only under mitigated climate change scenarios. Population genomic surveys suggest that climate-associated genetic variation occurs widely across species, but whether it is sufficient to allow population persistence via evolutionary adaptation has seldom been quantified. To ask whether rapid adaptation in reef-building corals can keep pace with future ocean warming, we measured genetic variation at predicted warm-adapted loci and simulated future evolution and persistence in a high-latitude population of corals from Rarotonga, Cook Islands. Alleles associated with thermal tolerance were present but at low frequencies in this cooler, southerly locality. Simulations based on predicted ocean warming in Rarotonga showed rapid evolution of heat tolerance resulting in population persistence under mild warming scenarios consistent with low CO2 emission plans, RCP2.6 and RCP4.5. Under more severe scenarios, RCP6.0 and RCP8.5, adaptation was not rapid enough to prevent extinction. Population adaptation was faster for models based on smaller numbers of additive loci that determine thermal tolerance and for higher population growth rates. Finally, accelerated migration via transplantation of thermally tolerant individuals (1 to 5%/year) sped adaptation. These results show that cool-water corals can adapt to warmer oceans but only under mild scenarios resulting from international emissions controls. Incorporation of genomic data into models of species response to climate change offers a promising method for estimating future adaptive processes.


Journal of Molecular Evolution | 2013

Inference of Functional Divergence Among Proteins When the Evolutionary Process is Non-stationary

Rachael A. Bay; Joseph P. Bielawski

Functional shifts during protein evolution are expected to yield shifts in substitution rate, and statistical methods can test for this at both codon and amino acid levels. Although methods based on models of sequence evolution serve as powerful tools for studying evolutionary processes, violating underlying assumptions can lead to false biological conclusions. It is not unusual for functional shifts to be accompanied by changes in other aspects of the evolutionary process, such as codon or amino acid frequencies. However, models used to test for functional divergence assume these frequencies remain constant over time. We employed simulation to investigate the impact of non-stationary evolution on functional divergence inference. We investigated three likelihood ratio tests based on codon models and found varying degrees of sensitivity. Joint effects of shifts in frequencies and selection pressures can be large, leading to false signals for positive selection. Amino acid-based tests (FunDi and Bivar) were also compromised when several aspects of the substitution process were not adequately modeled. We applied the same tests to a core genome “scan” for functional divergence between light-adapted ecotypes of the cyanobacteria Prochlorococcus, and carried out gene-specific simulations for ten genes. Results of those simulations illustrated how the inference of functional divergence at the genomic level can be seriously impacted by model misspecification. Although computationally costly, simulations motivated by data in hand are warranted when several aspects of the substitution process are either misspecified or not included in the models upon which the statistical tests were built.


Evolution | 2018

Polygenic evolution drives species divergence and climate adaptation in corals

Noah H. Rose; Rachael A. Bay; Megan K. Morikawa; Stephen R. Palumbi

Closely related species often show substantial differences in ecological traits that allow them to occupy different environmental niches. For few of these systems is it clear what the genomic basis of adaptation is and whether a few loci of major effect or many genome‐wide differences drive species divergence. Four cryptic species of the tabletop coral Acropora hyacinthus are broadly sympatric in American Samoa; here we show that two common species have differences in key environmental traits such as microhabitat distributions and thermal stress tolerance. We compared gene expression patterns and genetic polymorphism between these two species using RNA‐Seq. The vast majority of polymorphisms are shared between species, but the two species show widespread differences in allele frequencies and gene expression, and tend to host different symbiont types. We find that changes in gene expression are related to changes in the frequencies of many gene regulatory variants, but that many of these differences are consistent with the action of genetic drift. However, we observe greater genetic divergence between species in amino acid replacement polymorphisms compared to synonymous variants. These findings suggest that polygenic evolution plays a major role in driving species differences in ecology and resilience to climate change.


Ecology and Evolution | 2017

Transcriptome predictors of coral survival and growth in a highly variable environment

Rachael A. Bay; Stephen R. Palumbi

Abstract Concern over rapid environmental shifts associated with climate change has led to a search for molecular markers of environmental tolerance. Climate‐associated gene expression profiles exist for a number of systems, but have rarely been tied to fitness outcomes, especially in nonmodel organisms. We reciprocally transplanted corals between two backreef locations with more and less variable temperature regimes to disentangle effects of recent and native environment on survival and growth. Coral growth over 12 months was largely determined by local environment. Survival, however, was impacted by native environment; corals from the more variable environment had 22% higher survivorship. By contrast, corals native to the less variable environment had more variable survival. This might represent a “selective sieve” where poor survivors are filtered from the more stressful environment. We also find a potential fitness trade‐off—corals with high survival under stressful conditions grew less in the more benign environment. Transcriptome samples taken a year before transplantation were used to examine gene expression patterns that predicted transplant survival and growth. Two separate clusters of coexpressed genes were predictive of survival in the two locations. Genes from these clusters are candidate biomarkers for predicting persistence of corals under future climate change scenarios.


Proceedings of the Royal Society B: Biological Sciences | 2017

Genomic islands of divergence or opportunities for introgression

Rachael A. Bay; Kristen C. Ruegg

In animals, introgression between species is often perceived as the breakdown of reproductive isolating mechanisms, but gene flow between incipient species can also represent a source for potentially beneficial alleles. Recently, genome-wide datasets have revealed clusters of differentiated loci (‘genomic islands of divergence’) that are thought to play a role in reproductive isolation and therefore have reduced gene flow. We use simulations to further examine the evolutionary forces that shape and maintain genomic islands of divergence between two subspecies of the migratory songbird, Swainsons thrush (Catharus ustulatus), which have come into secondary contact since the last glacial maximum. We find that, contrary to expectation, gene flow is high within islands and is highly asymmetric. In addition, patterns of nucleotide diversity at highly differentiated loci suggest selection was more frequent in a single ecotype. We propose a mechanism whereby beneficial alleles spread via selective sweeps following a post-glacial demographic expansion in one subspecies and move preferentially across the hybrid zone. We find no evidence that genomic islands are the result of divergent selection or reproductive isolation, rather our results suggest that differentiated loci both within and outside islands could provide opportunities for adaptive introgression across porous species boundaries.

Collaboration


Dive into the Rachael A. Bay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke Thomas

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge