Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachana Shah is active.

Publication


Featured researches published by Rachana Shah.


Diabetes | 2010

Experimental Endotoxemia Induces Adipose Inflammation and Insulin Resistance in Humans

Nehal N. Mehta; Fiona C. McGillicuddy; Paul D. Anderson; Christine Hinkle; Rachana Shah; Leticia Pruscino; Jennifer Tabita-Martinez; Kim F. Sellers; Michael R. Rickels; Muredach P. Reilly

OBJECTIVE An emerging model of metabolic syndrome and type 2 diabetes is of adipose dysfunction with leukocyte recruitment into adipose leading to chronic inflammation and insulin resistance (IR). This study sought to explore potential mechanisms of inflammatory-induced IR in humans with a focus on adipose tissue. RESEARCH DESIGN AND METHODS We performed a 60-h endotoxemia protocol (3 ng/kg intravenous bolus) in healthy adults (n = 20, 50% male, 80% Caucasian, aged 27.3 ± 4.8 years). Before and after endotoxin, whole-blood sampling, subcutaneous adipose biopsies, and frequently sampled intravenous glucose tolerance (FSIGT) testing were performed. The primary outcome was the FSIGT insulin sensitivity index (Si). Secondary measures included inflammatory and metabolic markers and whole-blood and adipose mRNA and protein expression. RESULTS Endotoxemia induced systemic IR as demonstrated by a 35% decrease in Si (3.17 ± 1.66 to 2.06 ± 0.73 × 10−4 [μU · ml−1 · min−1], P < 0.005), while there was no effect on pancreatic β-cell function. In adipose, endotoxemia suppressed insulin receptor substrate-1 and markedly induced suppressor of cytokine signaling proteins (1 and 3) coincident with local activation of innate (interleukin-6, tumor necrosis factor) and adaptive (monocyte chemoattractant protein-1 and CXCL10 chemokines) inflammation. These changes are known to attenuate insulin receptor signaling in model systems. CONCLUSIONS We demonstrate, for the first time in humans, that acute inflammation induces systemic IR following modulation of specific adipose inflammatory and insulin signaling pathways. It also provides a rationale for focused mechanistic studies and a model for human proof-of-concept trials of novel therapeutics targeting adipose inflammation in IR and related consequences in humans.


Gut | 2016

Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production

Gary D. Wu; Charlene Compher; Eric Z. Chen; Sarah A. Smith; Rachana Shah; Kyle Bittinger; Christel Chehoud; Lindsey Albenberg; Lisa Nessel; Erin Gilroy; Julie Star; Aalim M. Weljie; Harry J. Flint; David C. Metz; Michael Bennett; Hongzhe Li; Frederic D. Bushman; James D. Lewis

Objective The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a ‘Westernised’ lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Design and results Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Conclusions Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites.


Journal of Biological Chemistry | 2009

Interferon γ Attenuates Insulin Signaling, Lipid Storage, and Differentiation in Human Adipocytes via Activation of the JAK/STAT Pathway

Fiona C. McGillicuddy; Elise H. Chiquoine; Christine Hinkle; Roy J. Kim; Rachana Shah; Helen M. Roche; Emer M. Smyth; Muredach P. Reilly

Recent reports demonstrate T-cell infiltration of adipose tissue in early obesity. We hypothesized that interferon (IFN) γ, a major T-cell inflammatory cytokine, would attenuate human adipocyte functions and sought to establish signaling mechanisms. Differentiated human adipocytes were treated with IFNγ ± pharmacological inhibitors prior to insulin stimulation. [3H]Glucose uptake and AKT phosphorylation were assessed as markers of insulin sensitivity. IFNγ induced sustained loss of insulin-stimulated glucose uptake in human adipocytes, coincident with reduced Akt phosphorylation and down-regulation of the insulin receptor, insulin receptor substrate-1, and GLUT4. Loss of adipocyte triglyceride storage was observed with IFNγ co-incident with reduced expression of peroxisome proliferator-activated receptor γ, adiponectin, perilipin, fatty acid synthase, and lipoprotein lipase. Treatment with IFNγ also blocked differentiation of pre-adipocytes to the mature phenotype. IFNγ-induced robust STAT1 phosphorylation and SOCS1 mRNA expression, with modest, transient STAT3 phosphorylation and SOCS3 induction. Preincubation with a non-selective JAK inhibitor restored glucose uptake and Akt phosphorylation while completely reversing IFNγ suppression of adipogenic mRNAs and adipocyte differentiation. Specific inhibition of JAK2 or JAK3 failed to block IFNγ effects suggesting a predominant role for JAK1-STAT1. We demonstrate that IFNγ attenuates insulin sensitivity and suppresses differentiation in human adipocytes, an effect most likely mediated via sustained JAK-STAT1 pathway activation.


Diabetes | 2011

Fractalkine Is a Novel Human Adipochemokine Associated With Type 2 Diabetes

Rachana Shah; Christine Hinkle; Jane F. Ferguson; Nehal N. Mehta; Mingyao Li; Liming Qu; Yun Lu; Mary E. Putt; Rexford S. Ahima; Muredach P. Reilly

OBJECTIVE Leukocyte infiltration of adipose is a critical determinant of obesity-related metabolic diseases. Fractalkine (CX3CL1) and its receptor (CX3CR1) comprise a chemokine system involved in leukocyte recruitment and adhesion in atherosclerosis, but its role in adipose inflammation and type 2 diabetes is unknown. RESEARCH DESIGN AND METHODS CX3CL1 mRNA and protein were quantified in subcutaneous adipose and blood during experimental human endotoxemia and in lean and obese human adipose. CX3CL1 cellular source was probed in human adipocytes, monocytes, and macrophages, and CX3CL1-blocking antibodies were used to assess its role in monocyte-adipocyte adhesion. The association of genetic variation in CX3CR1 with metabolic traits was determined in a community-based sample. Finally, plasma CX3CL1 levels were measured in a case-control study of type 2 diabetes. RESULTS Endotoxemia induced adipose CX3CL1 mRNA (32.7-fold, P < 1 × 10−5) and protein (43-fold, P = 0.006). Obese subjects had higher CX3CL1 levels in subcutaneous adipose compared with lean (0.420 ± 0.387 vs. 0.228 ± 0.187 ng/mL, P = 0.04). CX3CL1 was expressed and secreted by human adipocytes and stromal vascular cells. Inflammatory cytokine induction of CX3CL1 in human adipocytes (27.5-fold mRNA and threefold protein) was completely attenuated by pretreatment with a peroxisome proliferator–activated receptor-γ agonist. A putative functional nonsynonymous single nucleotide polymorphism (rs3732378) in CX3CR1 was associated with adipose and metabolic traits, and plasma CX3CL1 levels were increased in patients with type 2 diabetes vs. nondiabetics (0.506 ± 0.262 vs. 0.422 ± 0.210 ng/mL, P < 0.0001). CONCLUSIONS CX3CL1-CX3CR1 is a novel inflammatory adipose chemokine system that modulates monocyte adhesion to adipocytes and is associated with obesity, insulin resistance, and type 2 diabetes. These data provide support for CX3CL1 as a diagnostic and therapeutic target in cardiometabolic disease.


Diabetes | 2009

Gene Profiling of Human Adipose Tissue During Evoked Inflammation In Vivo

Rachana Shah; Yun Lu; Christine Hinkle; Fiona C. McGillicuddy; Roy J. Kim; Sridhar Hannenhalli; Thomas P. Cappola; Sean Heffron; Xing Mei Wang; Nehal N. Mehta; Mary E. Putt; Muredach P. Reilly

OBJECTIVE Adipose inflammation plays a central role in obesity-related metabolic and cardiovascular complications. However, few human adipose-secreted proteins are known to mediate these processes. We hypothesized that microarray mRNA profiling of human adipose during evoked inflammation could identify novel adipocytokines. RESEARCH DESIGN AND METHODS Healthy human volunteers (n = 14) were treated with intravenous endotoxin (3 ng/kg lipopolysaccharide [LPS]) and underwent subcutaneous adipose biopsies before and after LPS. On Affymetrix U133Plus 2.0 arrays, adipose mRNAs modulated >1.5-fold (with P < 0.00001) were selected. SignalP 3.0 and SecretomeP 2.0 identified genes predicted to encode secreted proteins. Of these, 86 candidates were chosen for validation in adipose from an independent human endotoxemia protocol (N = 7, with 0.6 ng/kg LPS) and for exploration of cellular origin in primary human adipocytes and macrophages in vitro. RESULTS Microarray identified 776 adipose genes modulated by LPS; 298 were predicted to be secreted. Of detectable prioritized genes, 82 of 85 (96% [95% CI 90–99]) were upregulated (fold changes >1.0) during the lower-dose (LPS 0.6 ng/kg) validation study and 51 of 85 (59% [49–70]) were induced greater than 1.5-fold. Treatment of primary adipocytes with LPS and macrophage polarization to M1 proinflammatory phenotype increased expression by 1.5-fold for 58 and 73% of detectable genes, respectively. CONCLUSIONS We demonstrate that evoked inflammation of human adipose in vivo modulated expression of multiple genes likely secreted by adipocytes and monocytes. These included established adipocytokines and chemokines implicated in recruitment and activation of lymphocytes, adhesion molecules, antioxidants, and several novel genes with unknown function. Such candidates may represent biomarkers and therapeutic targets for obesity-related complications.


Journal of Translational Medicine | 2013

Race and gender variation in response to evoked inflammation

Jane F. Ferguson; Parth Patel; Rhia Shah; Claire K. Mulvey; Ram Gadi; Prabhjot S. Nijjar; Haris Usman; Nehal N. Mehta; Rachana Shah; Stephen R. Master; Kathleen J. Propert; Muredach P. Reilly

BackgroundRace- and gender-variation in innate immunity may contribute to demographic differences in inflammatory and cardiometabolic disease; yet their influence on dynamic responses during inflammatory stress is poorly understood. Our objective was to examine race and gender influence on the response to experimental endotoxemia.MethodsThe Genetics of Evoked Responses to Niacin and Endotoxemia (GENE) study was designed to investigate regulation of inflammatory and metabolic responses during low-grade endotoxemia (LPS 1 ng/kg intravenously) in healthy individuals (median age 24, IQR=7) of European (EA; n=193, 47% female) and African ancestry (AA; n=101, 59% female).ResultsBaseline clinical, metabolic, and inflammatory biomarkers by race and gender were consistent with epidemiological literature; pre-LPS cytokines (e.g. median (IQR) IL-6, 2.7 (2) vs.2.1 (2) pg/ml, P=0.001) were higher in AA than EA. In contrast, acute cytokine responses during endotoxemia were lower in AA than EA (e.g. median (IQR) peak IL-1RA, 30 (38) vs.43 (45) ng/ml P=0.002) as was the induction of hepatic acute-phase proteins (e.g. median (IQR) peak CRP 12.9 (9) vs.17.4 (12) mg/L P=0.005). Further, baseline levels of cytokines were only weakly correlated with peak inflammatory responses (all rs <0.2) both in AA and in EA. There were less pronounced and less consistent differences in the response by gender, with males having a higher AUC for CRP response compared to females (median (IQR) AUC: 185 (112) vs. 155 (118), P=0.02).ConclusionsWe observed lower levels of evoked inflammation in response to endotoxin in AA compared with EA, despite similar or higher baseline levels of inflammatory markers in AA. Our data also suggest that levels of inflammatory biomarkers measured in epidemiological settings might not predict the degree of acute stress-response or risk of diseases characterized by activation of innate immunity.Trial registrationFDA clinicaltrials.gov registration number NCT00953667


Journal of Translational Medicine | 2012

A human model of inflammatory cardio-metabolic dysfunction; a double blind placebo-controlled crossover trial.

Nehal N. Mehta; Sean P Heffron; Parth Patel; Jane F. Ferguson; Rachana Shah; Christine Hinkle; Parasuram Krishnamoorthy; Rhia Shah; Jennifer Tabita-Martinez; Karen Terembula; Stephen R. Master; Michael R. Rickels; Muredach P. Reilly

BackgroundChronic inflammation may contribute to insulin resistance (IR), metabolic syndrome and atherosclerosis although evidence of causality is lacking in humans. We hypothesized that very low-dose experimental endotoxemia would induce adipose tissue inflammation and systemic IR during a low-grade but asymptomatic inflammatory response and thus provide an experimental model for future tests of pharmacologic and genomic modulation of cardio-metabolic traits in humans.MethodsTen healthy, human volunteers (50% male, 90% Caucasian, mean age 22.7 ± 3.8) were randomized in a double-masked, placebo-controlled, crossover study to separate 36-hour inpatient visits (placebo versus intravenous-LPS 0.6 ng/kg). We measured clinical symptoms via the McGill pain questionnaire and serial vital signs. Plasma and serum were collected for measurement of cytokines, C-reactive protein, insulin and glucose, serial whole blood & subcutaneous adipose tissue mRNA expression were measured by real-time PCR. HOMA-IR, a well-validated measure of IR was calculated to estimate insulin resistance, and frequently sampled intravenous glucose tolerance testing (FSIGTT) was performed to confirm an insulin resistant state. We performed ANOVA and within subject ANOVA to understand the differences in cytokines, adipose tissue inflammation and IR before and after LPS or placebo.ResultsThere was no significant difference between placebo and LPS in clinical responses of symptom scores, body temperature or heart rate. However, low-dose endotoxemia induced a rapid and transient 25-fold induction of plasma TNF-alpha and 100-fold increase in plasma IL-6 (Figure 1B) (p < 0.001 for both) both peaking at two hours, followed by modest inflammation in adipose tissue with increases in mRNA levels of several inflammatory genes known to modulate adipose and systemic insulin resistance. Adipose tissue mRNA levels of IL-6 (peak 6-fold, ANOVA F = 27.5, p < 0.001) and TNF-alpha (peak 1.8-fold, F = 2.9, p = 0.01) increased with MCP-1 (peak 10-fold, F = 5.6, p < 0.01) and fractalkine (CX3CL1) (peak 15-fold, F = 13.3, p < 0.001). Finally, HOMA-IR was 32% higher following LPS compared to placebo (p < 0.01) and insulin sensitivity declined by 21% following LPS compared to placebo (p < 0.05).ConclusionsWe present a low dose human endotoxemia model of inflammation which induces adipose tissue inflammation and systemic insulin resistance in the absence of overt clinical response. Such a model has the potential for broad and safe application in the study of novel therapeutics and genomic influences in cardio-metabolic disease.


European Heart Journal | 2014

Higher plasma CXCL12 levels predict incident myocardial infarction and death in chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort study

Nehal N. Mehta; Gregory J. Matthews; Parasuram Krishnamoorthy; Rhia Shah; Catherine McLaughlin; Parth Patel; Matthew J. Budoff; Jing Chen; Melanie Wolman; Alan S. Go; Jiang He; Peter A. Kanetsky; Stephen R. Master; Daniel J. Rader; Dominic S. Raj; Crystal A. Gadegbeku; Rachana Shah; Marty Schreiber; Michael J. Fischer; Raymond R. Townsend; John W. Kusek; Harold I. Feldman; Andrea S. Foulkes; Muredach P. Reilly

AIMS Genome-wide association studies revealed an association between a locus at 10q11, downstream from CXCL12, and myocardial infarction (MI). However, the relationship among plasma CXCL12, cardiovascular disease (CVD) risk factors, incident MI, and death is unknown. METHODS AND RESULTS We analysed study-entry plasma CXCL12 levels in 3687 participants of the Chronic Renal Insufficiency Cohort (CRIC) Study, a prospective study of cardiovascular and kidney outcomes in chronic kidney disease (CKD) patients. Mean follow-up was 6 years for incident MI or death. Plasma CXCL12 levels were positively associated with several cardiovascular risk factors (age, hypertension, diabetes, hypercholesterolaemia), lower estimated glomerular filtration rate (eGFR), and higher inflammatory cytokine levels (P < 0.05). In fully adjusted models, higher study-entry CXCL12 was associated with increased odds of prevalent CVD (OR 1.23; 95% confidence interval 1.14, 1.33, P < 0.001) for one standard deviation (SD) increase in CXCL12. Similarly, one SD higher CXCL12 increased the hazard of incident MI (1.26; 1.09,1.45, P < 0.001), death (1.20; 1.09,1.33, P < 0.001), and combined MI/death (1.23; 1.13-1.34, P < 0.001) adjusting for demographic factors, known CVD risk factors, and inflammatory markers and remained significant for MI (1.19; 1.03,1.39, P = 0.01) and the combined MI/death (1.13; 1.03,1.24, P = 0.01) after further controlling for eGFR and urinary albumin:creatinine ratio. CONCLUSIONS In CKD, higher plasma CXCL12 was associated with CVD risk factors and prevalent CVD as well as the hazard of incident MI and death. Further studies are required to establish if plasma CXCL12 reflect causal actions at the vessel wall and is a tool for genomic and therapeutic trials.


PLOS ONE | 2015

Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice

Rachana Shah; Sean O’Neill; Christine Hinkle; Jennifer Caughey; Stephen Stephan; Emma Lynch; Kate Bermingham; Gina Lynch; Rexford S. Ahima; Muredach P. Reilly

The fractalkine (CX3CL1-CX3CR1) chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.


American Journal of Kidney Diseases | 2015

Serum Fractalkine (CX3CL1) and Cardiovascular Outcomes and Diabetes: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study

Rachana Shah; Gregory J. Matthews; Rhia Shah; Catherine McLaughlin; Jing Chen; Melanie Wolman; Stephen R. Master; Boyang Chai; Dawei Xie; Daniel J. Rader; Dominic S. Raj; Nehal N. Mehta; Matthew J. Budoff; Michael J. Fischer; Alan S. Go; Raymond R. Townsend; Jiang He; John W. Kusek; Harold I. Feldman; Andrea S. Foulkes; Muredach P. Reilly; Lawrence J. Appel; James P. Lash; Akinlolu Ojo; Mahboob Rahman

BACKGROUND Cardiometabolic disease is a major cause of morbidity and mortality in persons with chronic kidney disease (CKD). Fractalkine (CX3CL1) is a potential mediator of both atherosclerosis and metabolic disease. Studies of the relationship of CX3CL1 with risk of cardiovascular disease (CVD) events and metabolic traits are lacking, particularly in the high-risk setting of CKD. STUDY DESIGN Cross-sectional and longitudinal observational analysis. SETTING & PARTICIPANTS Adults with CKD from 7 US sites participating in the Chronic Renal Insufficiency Cohort (CRIC) Study. PREDICTOR Quartiles of plasma CX3CL1 levels at baseline. OUTCOMES Baseline estimated glomerular filtration rate from a creatinine and cystatin C-based equation, prevalent and incident CVD, diabetes, metabolic syndrome and its criteria, homeostatic model assessment of insulin resistance, hemoglobin A1c level, myocardial infarction, all-cause mortality, and the composite outcome of myocardial infarction/all-cause mortality. RESULTS Among 3,687 participants, baseline CX3CL1 levels were associated positively with several CVD risk factors and metabolic traits, lower estimated glomerular filtration rate, and higher levels of inflammatory cytokines, as well as prevalent CVD (OR, 1.09; 95% CI, 1.01-1.19; P=0.03). Higher CX3CL1 level also was associated with prevalent diabetes (OR, 1.26; 95% CI, 1.16-1.38; P<0.001) in adjusted models. During a mean follow-up of 6 years, there were 352 deaths, 176 myocardial infarctions, and 484 composite outcomes. In fully adjusted models, 1-SD higher CX3CL1 level increased the hazard for all-cause mortality (1.11; 95% CI, 1.00-1.22; P=0.02) and the composite outcome (1.09; 95% CI, 1.00-1.19; P=0.04). LIMITATIONS Study design did not allow evaluation of changes over time, correlation with progression of phenotypes, or determination of causality of effect. CONCLUSIONS Circulating CX3CL1 level may contribute to both atherosclerotic CVD and diabetes in a CKD cohort. Further studies are required to establish mechanisms through which CX3CL1 affects the pathogenesis of atherosclerosis and diabetes.

Collaboration


Dive into the Rachana Shah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nehal N. Mehta

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jane F. Ferguson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Rhia Shah

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Christine Hinkle

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Parth Patel

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Claire K. Mulvey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Terembula

Cardiovascular Institute of the South

View shared research outputs
Top Co-Authors

Avatar

Stephen R. Master

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge