Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel A. Burton is active.

Publication


Featured researches published by Rachel A. Burton.


The Plant Cell | 2003

An Arabidopsis Callose Synthase, GSL5, Is Required for Wound and Papillary Callose Formation

Andrew K. Jacobs; Volker Lipka; Rachel A. Burton; Ralph Panstruga; Nicolai Strizhov; Paul Schulze-Lefert; Geoffrey B. Fincher

Arabidopsis was transformed with double-stranded RNA interference (dsRNAi) constructs designed to silence three putative callose synthase genes: GLUCAN SYNTHASE–LIKE5 (GSL5), GSL6, and GSL11. Both wound callose and papillary callose were absent in lines transformed with GSL5 dsRNAi and in a corresponding sequence-indexed GSL5 T-DNA insertion line but were unaffected in GSL6 and GSL11 dsRNAi lines. These data provide strong genetic evidence that the GSL genes of higher plants encode proteins that are essential for callose formation. Deposition of callosic plugs, or papillae, at sites of fungal penetration is a widely recognized early response of host plants to microbial attack and has been implicated in impeding entry of the fungus. Depletion of callose from papillae in gsl5 plants marginally enhanced the penetration of the grass powdery mildew fungus Blumeria graminis on the nonhost Arabidopsis. Paradoxically, the absence of callose in papillae or haustorial complexes correlated with the effective growth cessation of several normally virulent powdery mildew species and of Peronospora parasitica.


Science | 2006

Cellulose Synthase-Like CslF Genes Mediate the Synthesis of Cell Wall (1,3;1,4)-ß-d-Glucans

Rachel A. Burton; Sarah M. Wilson; Maria Hrmova; Andrew J. Harvey; Neil J. Shirley; Anne Medhurst; Bruce A. Stone; Ed Newbigin; Antony Bacic; Geoffrey B. Fincher

A characteristic feature of grasses and commercially important cereals is the presence of (1,3;1,4)-β-d-glucans in their cell walls. We have used comparative genomics to link a major quantitative trait locus for (1,3;1,4)-β-d-glucan content in barley grain to a cluster of cellulose synthase–like CslF genes in rice. After insertion of rice CslF genes into Arabidopsis, we detected (1,3;1,4)-β-d-glucan in walls of transgenic plants using specific monoclonal antibodies and enzymatic analysis. Because wild-type Arabidopsis does not contain CslF genes or have (1,3;1,4)-β-d-glucans in its walls, these experiments provide direct, gain-of-function evidence for the participation of rice CslF genes in (1,3;1,4)-β-d-glucan biosynthesis.


Nature Chemical Biology | 2010

Heterogeneity in the chemistry, structure and function of plant cell walls

Rachel A. Burton; Michael J. Gidley; Geoffrey B. Fincher

Higher plants resist the forces of gravity and powerful lateral forces through the cumulative strength of the walls that surround individual cells. These walls consist mainly of cellulose, noncellulosic polysaccharides and lignin, in proportions that depend upon the specific functions of the cell and its stage of development. Spatially and temporally controlled heterogeneity in the physicochemical properties of wall polysaccharides is observed at the tissue and individual cell levels, and emerging in situ technologies are providing evidence that this heterogeneity also occurs across a single cell wall. We consider the origins of cell wall heterogeneity and identify contributing factors that are inherent in the molecular mechanisms of polysaccharide biosynthesis and are crucial for the changing biological functions of the wall during growth and development. We propose several key questions to be addressed in cell wall biology, together with an alternative two-phase model for the assembly of noncellulosic polysaccharides in plants.


Plant Physiology | 2004

The CesA Gene Family of Barley. Quantitative Analysis of Transcripts Reveals Two Groups of Co-Expressed Genes

Rachel A. Burton; Neil J. Shirley; Brendon J. King; Andrew J. Harvey; Geoffrey B. Fincher

Sequence data from cDNA and genomic clones, coupled with analyses of expressed sequence tag databases, indicate that the CesA (cellulose synthase) gene family from barley (Hordeum vulgare) has at least eight members, which are distributed across the genome. Quantitative polymerase chain reaction has been used to determine the relative abundance of mRNA transcripts for individual HvCesA genes in vegetative and floral tissues, at different stages of development. To ensure accurate expression profiling, geometric averaging of multiple internal control gene transcripts has been applied for the normalization of transcript abundance. Total HvCesA mRNA levels are highest in coleoptiles, roots, and stems and much lower in floral tissues, early developing grain, and in the elongation zone of leaves. In most tissues, HvCesA1, HvCesA2, and HvCesA6 predominate, and their relative abundance is very similar; these genes appear to be coordinately transcribed. A second group, comprising HvCesA4, HvCesA7, and HvCesA8, also appears to be coordinately transcribed, most obviously in maturing stem and root tissues. The HvCesA3 expression pattern does not fall into either of these two groups, and HvCesA5 transcript levels are extremely low in all tissues. Thus, the HvCesA genes fall into two general groups of three genes with respect to mRNA abundance, and the co-expression of the groups identifies their products as candidates for the rosettes that are involved in cellulose biosynthesis at the plasma membrane. Phylogenetic analysis allows the two groups of genes to be linked with orthologous Arabidopsis CesA genes that have been implicated in primary and secondary wall synthesis.


The Plant Cell | 2000

Virus-Induced Silencing of a Plant Cellulose Synthase Gene

Rachel A. Burton; David M. Gibeaut; Antony Bacic; Kim Findlay; Keith Roberts; Andrew J. Hamilton; David C. Baulcombe; Geoffrey B. Fincher

Specific cDNA fragments corresponding to putative cellulose synthase genes (CesA) were inserted into potato virus X vectors for functional analysis in Nicotiana benthamiana by using virus-induced gene silencing. Plants infected with one group of cDNAs had much shorter internode lengths, small leaves, and a “dwarf” phenotype. Consistent with a loss of cell wall cellulose, abnormally large and in many cases spherical cells ballooned from the undersurfaces of leaves, particularly in regions adjacent to vascular tissues. Linkage analyses of wall polysaccharides prepared from infected leaves revealed a 25% decrease in cellulose content. Transcript levels for at least one member of the CesA cellulose synthase gene family were lower in infected plants. The decrease in cellulose content in cell walls was offset by an increase in homogalacturonan, in which the degree of esterification of carboxyl groups decreased from ∼50 to ∼33%. The results suggest that feedback loops interconnect the cellular machinery controlling cellulose and pectin biosynthesis. On the basis of the phenotypic features of the infected plants, changes in wall composition, and the reduced abundance of CesA mRNA, we concluded that the cDNA fragments silenced one or more cellulose synthase genes.


Plant Physiology | 2008

The Genetics and Transcriptional Profiles of the Cellulose Synthase-Like HvCslF Gene Family in Barley

Rachel A. Burton; Stephen A. Jobling; Andrew J. Harvey; Neil J. Shirley; D. E. Mather; Antony Bacic; Geoffrey B. Fincher

Cellulose synthase-like CslF genes have been implicated in the biosynthesis of (1,3;1,4)-β-d-glucans, which are major cell wall constituents in grasses and cereals. Seven CslF genes from barley (Hordeum vulgare) can be divided into two classes on the basis of intron-exon arrangements. Four of the HvCslF genes have been mapped to a single locus on barley chromosome 2H, in a region corresponding to a major quantitative trait locus for grain (1,3;1,4)-β-d-glucan content. The other HvCslF genes map to chromosomes 1H, 5H, and 7H, and in two cases the genes are close to other quantitative trait loci for grain (1,3;1,4)-β-d-glucan content. Spatial and temporal patterns of transcription of the seven genes have been defined through quantitative polymerase chain reaction. In developing barley coleoptiles HvCslF6 mRNA is most abundant. Transcript levels are maximal in 4- to 5-d coleoptiles, at a time when (1,3;1,4)-β-d-glucan content of coleoptile cell walls also reaches maximal levels. In the starchy endosperm of developing grain, HvCslF6 and HvCslF9 transcripts predominate. Two peaks of transcription are apparent. One occurs just after endosperm cellularization, 4 to 8 d after pollination, while the second occurs much later in grain development, more than 20 d after pollination. Marked varietal differences in transcription of the HvCslF genes are observed during endosperm development. Given the commercial importance of cereal (1,3;1,4)-β-d-glucans in human nutrition, in stock feed, and in malting and brewing, the observation that only two genes, HvCslF6 and HvCslF9, are transcribed at high levels in developing grain is of potential relevance for the future manipulation of grain (1,3;1,4)-β-d-glucan levels.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-d-glucan synthesis in transgenic Arabidopsis

Monika S. Doblin; Filomena Pettolino; Sarah M. Wilson; Rebecca E. Campbell; Rachel A. Burton; Geoffrey B. Fincher; Ed Newbigin; Antony Bacic

The walls of grasses and related members of the Poales are characterized by the presence of the polysaccharide (1,3, 1,4)-β-D-glucan (β-glucan). To date, only members of the grass-specific cellulose synthase-like F (CSLF) gene family have been implicated in its synthesis. Assuming that other grass-specific CSL genes also might encode synthases for this polysaccharide, we cloned HvCSLH1, a CSLH gene from barley (Hordeum vulgare L.), and expressed an epitope-tagged version of the cDNA in Arabidopsis, a species with no CSLH genes and no β-glucan in its walls. Transgenic Arabidopsis lines that had detectable amounts of the epitope-tagged HvCSLH1 protein accumulated β-glucan in their walls. The presence of β-glucan was confirmed by immunoelectron microscopy (immuno-EM) of sectioned tissues and chemical analysis of wall extracts. In the chemical analysis, characteristic tri- and tetra-saccharides were identified by high-performance anion-exchange chromatography and MALDI-TOF MS following their release from transgenic Arabidopsis walls by a specific β-glucan hydrolase. Immuno-EM also was used to show that the epitope-tagged HvCSLH1 protein was in the endoplasmic reticulum and Golgi-associated vesicles, but not in the plasma membrane. In barley, HvCSLH1 was expressed at very low levels in leaf, floral tissues, and the developing grain. In leaf, expression was highest in xylem and interfascicular fiber cells that have walls with secondary thickenings containing β-glucan. Thus both the CSLH and CSLF families contribute to β-glucan synthesis in grasses and probably do so independently of each other, because there is no significant transcriptional correlation between these genes in the barley tissues surveyed.


Journal of Biological Chemistry | 2003

Bifunctional family 3 glycoside hydrolases from Barley with alpha-L-Arabinofuranosidase and beta-D-Xylosidase activity characterization, primary structures and COOH-terminal processing

Robert C. Lee; Maria Hrmova; Rachel A. Burton; Jelle Lahnstein; Geoffrey B. Fincher

An α-l-arabinofuranosidase and a β-d-xylosidase, designated ARA-I and XYL, respectively, have been purified about 1,000-fold from extracts of 5-day-old barley (Hordeum vulgare L.) seedlings using ammonium sulfate fractional precipitation, ion exchange chromatography, chromatofocusing, and size-exclusion chromatography. The ARA-I has an apparent molecular mass of 67 kDa and an isoelectric point of 5.5, and its catalytic efficiency during hydrolysis of 4′-nitrophenyl α-l-arabinofuranoside is only slightly higher than during hydrolysis of 4′-nitrophenyl β-d-xyloside. Thus, the enzyme is actually a bifunctional α-l-arabinofuranosidase/β-d-xylosidase. In contrast, the XYL enzyme, which also has an apparent molecular mass of 67 kDa and an isoelectric point of 6.7, preferentially hydrolyzes 4′-nitrophenyl β-d-xyloside, with a catalytic efficiency ∼30-fold higher than with 4′-nitrophenyl α-l-arabinofuranoside. The enzymes hydrolyze wheat flour arabinoxylan slowly but rapidly hydrolyze oligosaccharide products released from this polysaccharide by (1 → 4)-β-d-xylan endohydrolase. Both enzymes hydrolyze (1 → 4)-β-d-xylopentaose, and ARA-I can also degrade (1 → 5)-α-l-arabinofuranohexaose. ARA-I and XYL cDNAs encode mature proteins of 748 amino acid residues which have calculated molecular masses of 79.2 and 80.5 kDa, respectively. Both are family 3 glycoside hydrolases. The discrepancies between the apparent molecular masses obtained for the purified enzymes and those predicted from the cDNAs are attributable to COOH-terminal processing, through which about 130 amino acid residues are removed from the primary translation product. The genes encoding the ARA-I and XYL have been mapped to chromosomes 2H and 6H, respectively. ARA-I transcripts are most abundant in young roots, young leaves, and developing grain, whereas XYL mRNA is detected in most barley tissues.


The Plant Cell | 2011

Cell-Specific Vacuolar Calcium Storage Mediated by CAX1 Regulates Apoplastic Calcium Concentration, Gas Exchange, and Plant Productivity in Arabidopsis

Simon J. Conn; Matthew Gilliham; Asmini Athman; Andreas W. Schreiber; Ute Baumann; Isabel Moller; Ninghui Cheng; Matthew A. Stancombe; Kendal D. Hirschi; Alex A. R. Webb; Rachel A. Burton; Brent N. Kaiser; Stephen D. Tyerman; Roger A. Leigh

Mineral elements are often preferentially stored in vacuoles of specific leaf cell types, but the mechanism and physiological role for this phenomenon is poorly understood. We use single-cell analysis to reveal the genetic basis underpinning mesophyll-specific calcium storage in Arabidopsis leaves and a variety of physiological assays to uncover its fundamental importance to plant productivity. The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca2+ transporters, CAX1 (Ca2+/H+-antiporter), ACA4, and ACA11 (Ca2+-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO2 assimilation, and leaf growth rate; increased transcript abundance of other Ca2+ transporter genes; altered expression of cell wall–modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca2+], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca2+] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.


Molecular Plant | 2009

(1,3;1,4)-β-D-Glucans in Cell Walls of the Poaceae, Lower Plants, and Fungi: A Tale of Two Linkages

Rachel A. Burton; Geoffrey B. Fincher

(1,3;1,4)-beta-D-glucans consist of unbranched and unsubstituted chains of (1,3)- and (1,4)-beta-glucosyl residues, in which the ratio of (1,4)-beta-D-glucosyl residues to (1,3)-beta-D-glucosyl residues appears to influence not only the physicochemical properties of the polysaccharide and therefore its functional properties in cell walls, but also its adoption by different plant species during evolution. The (1,3;1,4)-beta-D-glucans are widely distributed as non-cellulosic matrix phase polysaccharides in cell walls of the Poaceae, which evolved relatively recently and consist of the grasses and commercially important cereal species, but they are less commonly found in lower vascular plants, such as the horsetails, in algae and in fungi. The (1,3;1,4)-beta-D-glucans have often been considered to be components mainly of primary cell walls, but recent observations indicate that they can also be located in secondary walls of certain tissues. Enzymes involved in the depolymerisation of (1,3;1,4)-beta-D-glucans have been well characterized. In contrast, initial difficulties in purifying the enzymes responsible for (1,3;1,4)-beta-D-glucan biosynthesis slowed progress in the identification of the genes that encode (1,3;1,4)-beta-D-glucan synthases, but emerging comparative genomics and associated techniques have allowed at least some of the genes that contribute to (1,3;1,4)-beta-D-glucan synthesis in the Poaceae to be identified. Whether similar genes and enzymes also mediate (1,3;1,4)-beta-D-glucan biosynthesis in lower plants and fungi is not yet known. Here, we compare the different fine structures of (1,3;1,4)-beta-D-glucans across the plant kingdom, present current information on the genes that have been implicated recently in their biosynthesis, and consider aspects of the cell biology of (1,3;1,4)-beta-D-glucan biosynthesis in the Poaceae.

Collaboration


Dive into the Rachel A. Burton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antony Bacic

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marilyn Henderson

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar

Natalie S. Betts

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar

Alan Little

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Julian G. Schwerdt

Australian Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge