Rachel A. Racicot
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel A. Racicot.
Proceedings of the Royal Society B: Biological Sciences | 2015
Simon A.F. Darroch; Erik A. Sperling; Thomas H. Boag; Rachel A. Racicot; Sara J. Mason; Alex S. Morgan; Sarah M. Tweedt; Paul M. Myrow; David T. Johnston; Douglas H. Erwin; Marc Laflamme
The latest Neoproterozoic extinction of the Ediacara biota has been variously attributed to catastrophic removal by perturbations to global geochemical cycles, ‘biotic replacement’ by Cambrian-type ecosystem engineers, and a taphonomic artefact. We perform the first critical test of the ‘biotic replacement’ hypothesis using combined palaeoecological and geochemical data collected from the youngest Ediacaran strata in southern Namibia. We find that, even after accounting for a variety of potential sampling and taphonomic biases, the Ediacaran assemblage preserved at Farm Swartpunt has significantly lower genus richness than older assemblages. Geochemical and sedimentological analyses confirm an oxygenated and non-restricted palaeoenvironment for fossil-bearing sediments, thus suggesting that oxygen stress and/or hypersalinity are unlikely to be responsible for the low diversity of communities preserved at Swartpunt. These combined analyses suggest depauperate communities characterized the latest Ediacaran and provide the first quantitative support for the biotic replacement model for the end of the Ediacara biota. Although more sites (especially those recording different palaeoenvironments) are undoubtedly needed, this study provides the first quantitative palaeoecological evidence to suggest that evolutionary innovation, ecosystem engineering and biological interactions may have ultimately caused the first mass extinction of complex life.
Journal of Anatomy | 2015
Eric G. Ekdale; Rachel A. Racicot
The evolution of hearing in cetaceans is a matter of current interest given that odontocetes (toothed whales) are sensitive to high frequency sounds and mysticetes (baleen whales) are sensitive to low and potentially infrasonic noises. Earlier diverging stem cetaceans (archaeocetes) were hypothesized to have had either low or high frequency sensitivity. Through CT scanning, the morphology of the bony labyrinth of the basilosaurid archaeocete Zygorhiza kochii is described and compared to novel information from the inner ears of mysticetes, which are less known than the inner ears of odontocetes. Further comparisons are made with published information for other cetaceans. The anatomy of the cochlea of Zygorhiza is in line with mysticetes and supports the hypothesis that Zygorhiza was sensitive to low frequency noises. Morphological features that support the low frequency hypothesis and are shared by Zygorhiza and mysticetes include a long cochlear canal with a high number of turns, steeply graded curvature of the cochlear spiral in which the apical turn is coiled tighter than the basal turn, thin walls separating successive turns that overlap in vestibular view, and reduction of the secondary bony lamina. Additional morphology of the vestibular system indicates that Zygorhiza was more sensitive to head rotations than extant mysticetes are, which likely indicates higher agility in the ancestral taxon.
Science Advances | 2015
Imran A. Rahman; Simon A.F. Darroch; Rachel A. Racicot; Marc Laflamme
Computational fluid dynamics demonstrates that the Precambrian organism Tribrachidium was likely a passive suspension feeder. The first diverse and morphologically complex macroscopic communities appear in the late Ediacaran period, 575 to 541 million years ago (Ma). The enigmatic organisms that make up these communities are thought to have formed simple ecosystems characterized by a narrow range of feeding modes, with most restricted to the passive absorption of organic particles (osmotrophy). We test between competing feeding models for the iconic Ediacaran organism Tribrachidium heraldicum using computational fluid dynamics. We show that the external morphology of Tribrachidium passively directs water flow toward the apex of the organism and generates low-velocity eddies above apical “pits.” These patterns of fluid flow are inconsistent with osmotrophy and instead support the interpretation of Tribrachidium as a passive suspension feeder. This finding provides the oldest empirical evidence for suspension feeding at 555 to 550 Ma, ~10 million years before the Cambrian explosion, and demonstrates that Ediacaran organisms formed more complex ecosystems in the latest Precambrian, involving a larger number of ecological guilds, than currently appreciated.
Current Biology | 2014
Rachel A. Racicot; Thomas A. Deméré; Brian Lee Beatty; Robert W. Boessenecker
Modern porpoises (Odontoceti: Phocoenidae) are some of the smallest cetaceans and usually feed near the seafloor on small fish and cephalopods [1-3]. Within both extinct and extant phocoenids, no evidence for specialized mandibular morphology has been documented [4-7]. Here we describe a new species of extinct porpoise, Semirostrum ceruttii, from the marine Pliocene San Diego (4.2-1.6 mega-annum, Ma) and Purisima (5-2.5 Ma) formations of California. The mandibles comprise a long, fused, and nearly edentulous prognathous symphysis, extending farther beyond the rostrum than in any known mammal. Phylogenetic analyses based on morphology reconstruct Semirostrum ceruttii as sister to extant (crown) porpoise species with moderate support. We describe the spectacularly preserved holotype specimen based on computed tomography (CT) scans, which allowed visualization of the elongate mental and accessory canals within the symphysis. The elongate canals are similar to those found in Rynchops birds [8] and were likely involved in sensory function. Oblique labial wear facets present on numerous small conical mandibular teeth posterior to the symphysis suggest regular contact with benthic substrate. The unique mandibular and dental characteristics, along with robust scapulae, sternum, and unfused cervical vertebrae, support the interpretation that this species employed a form of benthic skim feeding by using its mandible to probe for and obtain prey.
Journal of Paleontology | 2014
Rachel A. Racicot; Timothy Rowe
Abstract The Pliocene fossil porpoise SDSNH 65276 has extremely elongate mandibular morphology, unlike that of any marine amniote, and is superficially most similar to the living bird species known as skimmers (Rynchops sp.). Endocasts of the pterygoid sinuses and endocranial cavity were digitally segmented from high-resolution X-ray CT scans of the specimen to explore internal anatomy of functionally and phylogenetically important anatomical features of this specimen and odontocetes in general. The sinuses are similar in volume and shape to extant porpoise species, but the dorsal extension of the preorbital lobes are particularly elongate as in the harbor porpoise (Phocoena phocoena). The cranial endocast also shows similarities with extant porpoises, but has much deeper interhemispheric fissures, which are filled by ossified meninges, particularly a deep falx cerebri and shallower tentorium cerebelli. Ossifications of these parts of the meninges may reflect faster angular accelerations of the head, deeper diving ability, or both. Penetrations of the endocranial cavity for cranial nerves and blood vessels are like those of extant porpoises. The internal skull morphology of this unique delphinoid sheds additional light both on its phylogenetic affinities and novel odontocete adaptations.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2013
Rachel A. Racicot; Matthew W. Colbert
Evolution of endocranial anatomy in cetaceans is important from the perspective of echolocation ability, intelligence, social structure, and alternate pathways for circulation to the brain. Apart from the importance of studying brain shape and asymmetries as they relate to aspects of behavior and intelligence, cranial endocasts can show a close correspondence to the hydrostatic shape of the brain in life, and canals and grooves can preserve features of the circulatory system. Multiple samples are rarely available for studies of individual variation, especially in fossils, thus a first step in quantifying variation and making comparisons with fossils is made possible with CT scans of osteological specimens. This study presents a series of high‐resolution X‐ray CT‐derived cranial endocasts of six extant species of Phocoenidae, a clade including some of the smallest and one of the rarest cetaceans. Degree of gyrification varies interspecifically and intraspecifically, possibly resulting from variation in preservation of the ossified meninges. Computed tomographic data show that visually assessed asymmetry in the cranial endocasts is not correlated with volumetric measurements, but nonetheless may reflect torsion in the skulls shape such that the right cerebral and cerebellar hemispheres extend rostrally and laterally more than the left. Vasculature and canals are similar to other described cetacean species, but the hypophyseal casts are unusual. Similarities between brain shape and volume measurements in the different species can be attributed to paedomorphism and concomitant variation in ecological preferences. This may explain similarities Neophocaena phocaenoides and Phocoena sinus share with the juvenile Phocoena phocoena specimen studied. Anat Rec, 296:979–992, 2013.
Journal of Morphology | 2013
Rachel A. Racicot; Annalisa Berta
High‐resolution X‐ray computed tomographic scans were used to examine pterygoid sinus morphology within extant porpoise species and one delphinid (Tursiops truncatus), in order to consider: 1) intraspecific and interspecific variation among the studied species; 2) the most parsimonious sequence of character acquisition; and 3) the potential functional roles of the preorbital lobes of the sinuses in sound reflection. Scans revealed that the pterygoid/palatine regions are mediolaterally broader in the earliest diverging phocoenid (Neophocaena phocaenoides) and Tursiops truncatus than the dorsoventrally elongated sinuses observed in other species. Rostrocaudal lengths of the sphenoidal regions of the sinuses in all individuals studied are proportionally similar, indicating conservatism in this region across species. The neonate Phocoena phocoena has shorter preorbital lobes than adults, but they are still proportionally longer than Neophocaena phocaenoides and Phocoena spinipinnis. The preorbital lobes broaden mediolaterally to varying degrees across species; in particular, Phocoenoides dalli has the largest dorsal and lateral expansion of this region. Assuming the highest pulse frequency produced by porpoises is 150 kHz, all regions of the preorbital lobes are thick enough to reflect the wavelengths produced. In addition, the neonate preorbital lobes are not as elongated as they are in adults, and the dorsal third of this region may not reflect sound to the same extent. This study reinforces the importance of using nondestructive methods to quantify variation in endocranial anatomy and the value of CT data for recovering phylogenetically useful information, as well as functional roles sinuses play in concert with the soft tissue head anatomy for biosonar. J. Morphol. 2013.
BMC Evolutionary Biology | 2015
Allison Y. Hsiang; Daniel J. Field; Timothy H. Webster; Adam D.B. Behlke; Matthew B. Davis; Rachel A. Racicot; Jacques A. Gauthier
Palaeogeography, Palaeoclimatology, Palaeoecology | 2016
Simon A.F. Darroch; Thomas H. Boag; Rachel A. Racicot; Sarah M. Tweedt; Sara J. Mason; Douglas H. Erwin; Marc Laflamme
Palaeontology | 2012
Jakob Vinther; Peter Jell; George Kampouris; Ryan M. Carney; Rachel A. Racicot; Derek E. G. Briggs