Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel A. Rigg is active.

Publication


Featured researches published by Rachel A. Rigg.


Thrombosis Research | 2015

The BCR-ABL inhibitor ponatinib inhibits platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling, platelet activation and aggregate formation under shear

Cassandra P. Loren; Joseph E. Aslan; Rachel A. Rigg; Marie S. Nowak; Laura D. Healy; Andras Gruber; Brian J. Druker; Owen J. T. McCarty

BACKGROUND Treatment of chronic myelogenous leukemia (CML) with the BCR-ABL tyrosine kinase inhibitor (TKI) imatinib significantly improves patient outcomes. As some patients are unresponsive to imatinib, next generation BCR-ABL inhibitors such as nilotinib have been developed to treat patients with imatinib-resistant CML. The use of some BCR-ABL inhibitors has been associated with bleeding diathesis, and these inhibitors have been shown to inhibit platelet functions, which may explain the hemostasis impairment. Surprisingly, a new TKI, ponatinib, has been associated with a high incidence of severe acute ischemic cardiovascular events. The mechanism of this unexpected adverse effect remains undefined. OBJECTIVE AND METHODS This study used biochemical and functional assays to evaluate whether ponatinib was different from the other BCR-ABL inhibitors with respect to platelet activation, spreading, and aggregation. RESULTS AND CONCLUSIONS Our results show that ponatinib, similar to other TKIs, acts as a platelet antagonist. Ponatinib inhibited platelet activation, spreading, granule secretion, and aggregation, likely through broad spectrum inhibition of platelet tyrosine kinase signaling, and also inhibited platelet aggregate formation in whole blood under shear. As our results indicate that pobatinib inhibits platelet function, the adverse cardiovascular events observed in patients taking ponatinib may be the result of the effect of ponatinib on other organs or cell types, or disease-specific processes, such as BCR-ABL+cells undergoing apoptosis in response to chemotherapy, or drug-induced adverse effects on the integrity of the vascular endothelium in ponatinib-treated patients.


American Journal of Physiology-cell Physiology | 2016

Oral administration of Bruton's tyrosine kinase inhibitors impairs GPVI-mediated platelet function

Rachel A. Rigg; Joseph E. Aslan; Laura D. Healy; Michael Wallisch; Marisa L. D. Thierheimer; Cassandra P. Loren; Jiaqing Pang; Monica T. Hinds; Andras Gruber; Owen J. T. McCarty

The Tec family kinase Brutons tyrosine kinase (Btk) plays an important signaling role downstream of immunoreceptor tyrosine-based activation motifs in hematopoietic cells. Mutations in Btk are involved in impaired B-cell maturation in X-linked agammaglobulinemia, and Btk has been investigated for its role in platelet activation via activation of the effector protein phospholipase Cγ2 downstream of the platelet membrane glycoprotein VI (GPVI). Because of its role in hematopoietic cell signaling, Btk has become a target in the treatment of chronic lymphocytic leukemia and mantle cell lymphoma; the covalent Btk inhibitor ibrutinib was recently approved by the US Food and Drug Administration for treatment of these conditions. Antihemostatic events have been reported in some patients taking ibrutinib, although the mechanism of these events remains unknown. We sought to determine the effects of Btk inhibition on platelet function in a series of in vitro studies of platelet activation, spreading, and aggregation. Our results show that irreversible inhibition of Btk with two ibrutinib analogs in vitro decreased human platelet activation, phosphorylation of Btk, P-selectin exposure, spreading on fibrinogen, and aggregation under shear flow conditions. Short-term studies of ibrutinib analogs administered in vivo also showed abrogation of platelet aggregation in vitro, but without measurable effects on plasma clotting times or on bleeding in vivo. Taken together, our results suggest that inhibition of Btk significantly decreased GPVI-mediated platelet activation, spreading, and aggregation in vitro; however, prolonged bleeding was not observed in a model of bleeding.


Frontiers in Oncology | 2012

Quantification of cellular volume and sub-cellular density fluctuations: comparison of normal peripheral blood cells and circulating tumor cells identified in a breast cancer patient.

Kevin G. Phillips; Anand Kolatkar; Kathleen J. Rees; Rachel A. Rigg; Dena Marrinucci; Madelyn Luttgen; Kelly Bethel; Peter Kuhn; Owen J. T. McCarty

Cancer metastasis, the leading cause of cancer-related deaths, is facilitated in part by the hematogenous transport of circulating tumor cells (CTCs) through the vasculature. Clinical studies have demonstrated that CTCs circulate in the blood of patients with metastatic disease across the major types of carcinomas, and that the number of CTCs in peripheral blood is correlated with overall survival in metastatic breast, colorectal, and prostate cancer. While the potential to monitor metastasis through CTC enumeration exists, the basic physical features of CTCs remain ill defined and moreover, the corresponding clinical utility of these physical parameters is unknown. To elucidate the basic physical features of CTCs we present a label-free imaging technique utilizing differential interference contrast (DIC) microscopy to measure cell volume and to quantify sub-cellular mass-density variations as well as the size of subcellular constituents from mass-density spatial correlations. DIC measurements were carried out on CTCs identified in a breast cancer patient using the high-definition (HD) CTC detection assay. We compared the biophysical features of HD-CTC to normal blood cell subpopulations including leukocytes, platelets (PLT), and red blood cells (RBCs). HD-CTCs were found to possess larger volumes, decreased mass-density fluctuations, and shorter-range spatial density correlations in comparison to leukocytes. Our results suggest that HD-CTCs exhibit biophysical signatures that might be used to potentially aid in their detection and to monitor responses to treatment in a label-free fashion. The biophysical parameters reported here can be incorporated into computational models of CTC-vascular interactions and in vitro flow models to better understand metastasis.


American Journal of Physiology-cell Physiology | 2015

The thrombotic potential of circulating tumor microemboli: computational modeling of circulating tumor cell-induced coagulation.

Kevin G. Phillips; Angela M. Lee; Garth W. Tormoen; Rachel A. Rigg; Anand Kolatkar; Madelyn Luttgen; Kelly Bethel; Lyudmila Bazhenova; Peter Kuhn; Paul K. Newton; Owen J. T. McCarty

Thrombotic events can herald the diagnosis of cancer, preceding any cancer-related clinical symptoms. Patients with cancer are at a 4- to 7-fold increased risk of suffering from venous thromboembolism (VTE), with ∼7,000 patients with lung cancer presenting from VTEs. However, the physical biology underlying cancer-associated VTE remains poorly understood. Several lines of evidence suggest that the shedding of tissue factor (TF)-positive circulating tumor cells (CTCs) and microparticles from primary tumors may serve as a trigger for cancer-associated thrombosis. To investigate the potential direct and indirect roles of CTCs in VTE, we characterized thrombin generation by CTCs in an interactive numerical model coupling blood flow with advection-diffusion kinetics. Geometric measurements of CTCs isolated from the peripheral blood of a lung cancer patient prior to undergoing lobectomy formed the basis of the simulations. Singlet, doublet, and aggregate circulating tumor microemboli (CTM) were investigated in the model. Our numerical model demonstrated that CTM could potentiate occlusive events that drastically reduce blood flow and serve as a platform for the promotion of thrombin generation in flowing blood. These results provide a characterization of CTM dynamics in the vasculature and demonstrate an integrative framework combining clinical, biophysical, and mathematical approaches to enhance our understanding of CTCs and their potential direct and indirect roles in VTE formation.


American Journal of Physiology-cell Physiology | 2015

A physical sciences network characterization of circulating tumor cell aggregate transport

Michael R. King; Kevin G. Phillips; Annachiara Mitrugno; Tae Rin Lee; Adelaide de Guillebon; Siddarth Chandrasekaran; Matthew J. McGuire; Russell T. Carr; Sandra M. Baker-Groberg; Rachel A. Rigg; Anand Kolatkar; Madelyn Luttgen; Kelly Bethel; Peter Kuhn; Paolo Decuzzi; Owen J. T. McCarty

Circulating tumor cells (CTC) have been implicated in the hematogenous spread of cancer. To investigate the fluid phase of cancer from a physical sciences perspective, the multi-institutional Physical Sciences-Oncology Center (PS-OC) Network performed multidisciplinary biophysical studies of single CTC and CTC aggregates from a patient with breast cancer. CTCs, ranging from single cells to aggregates comprised of 2-5 cells, were isolated using the high-definition CTC assay and biophysically profiled using quantitative phase microscopy. Single CTCs and aggregates were then modeled in an in vitro system comprised of multiple breast cancer cell lines and microfluidic devices used to model E-selectin mediated rolling in the vasculature. Using a numerical model coupling elastic collisions between red blood cells and CTCs, the dependence of CTC vascular margination on single CTCs and CTC aggregate morphology and stiffness was interrogated. These results provide a multifaceted characterization of single CTC and CTC aggregate dynamics in the vasculature and illustrate a framework to integrate clinical, biophysical, and mathematical approaches to enhance our understanding of the fluid phase of cancer.


Thrombosis Research | 2016

The hemostatic role of factor XI

Cristina Puy; Rachel A. Rigg; Owen J. T. McCarty

Coagulation factor (F)XI has been described as a component of the early phase of the contact pathway of blood coagulation, acting downstream of factor XII. However, patients deficient in upstream members of the contact pathway, including FXII and prekallikrein, do not exhibit bleeding complications, while FXI-deficient patients sometimes experience mild bleeding, suggesting FXI plays a role in hemostasis independent of the contact pathway. Further complicating the picture, bleeding risk in FXI-deficient patients is difficult to predict because bleeding symptoms have not been found to correlate with FXI antigen levels or activity. However, recent studies have emerged to expand our understanding of FXI, demonstrating that activated FXI is able to activate coagulation factors FX, FV, and FVIII, and inhibit the anti-coagulant tissue factor pathway inhibitor (TFPI). Understanding these activities of FXI may help to better diagnose which FXI-deficient patients are at risk for bleeding. In contrast to its mild hemostatic activities, FXI is known to play a significant role in thrombosis, as it is a demonstrated independent risk factor for deep vein thrombosis, ischemic stroke, and myocardial infarction. Recent translational approaches have begun testing FXI as an antithrombotic, with one promising clinical study showing that an anti-sense oligonucleotide against FXI prevented venous thrombosis in elective knee surgery. A better understanding of the varied and complex role of FXI in both thrombosis and hemostasis will help to allow better prediction of bleeding risk in FXI-deficient patients and also informing the development of targeted agents to inhibit the thrombotic activities of FXI while preserving hemostasis.


Journal of Thrombosis and Haemostasis | 2015

Lysine acetyltransfer supports platelet function.

Joseph E. Aslan; Rachel A. Rigg; Marie S. Nowak; Cassandra P. Loren; Sandra M. Baker-Groberg; Jiaqing Pang; Larry L. David; Owen J. T. McCarty

The reversible acetylation of protein lysine ε‐amino groups, catalyzed by lysine acetyltransferases and deacetylases, serves as a molecular switch in the orchestration of diverse cellular activities. Here, we aimed to investigate the role of lysine acetyltransfer in platelet function.


American Journal of Physiology-cell Physiology | 2017

Assessment of roles for the Rho-specific guanine nucleotide dissociation inhibitor Ly-GDI in platelet function: a spatial systems approach

Anh T.P. Ngo; Marisa L. D. Thierheimer; Özgün Babur; Anne D Rocheleau; Tao Huang; Jiaqing Pang; Rachel A. Rigg; Annachiara Mitrugno; Dan Theodorescu; Julja Burchard; Xiaolin Nan; Emek Demir; Owen J. T. McCarty; Joseph E. Aslan

On activation at sites of vascular injury, platelets undergo morphological alterations essential to hemostasis via cytoskeletal reorganizations driven by the Rho GTPases Rac1, Cdc42, and RhoA. Here we investigate roles for Rho-specific guanine nucleotide dissociation inhibitor proteins (RhoGDIs) in platelet function. We find that platelets express two RhoGDI family members, RhoGDI and Ly-GDI. Whereas RhoGDI localizes throughout platelets in a granule-like manner, Ly-GDI shows an asymmetric, polarized localization that largely overlaps with Rac1 and Cdc42 as well as microtubules and protein kinase C (PKC) in platelets adherent to fibrinogen. Antibody interference and platelet spreading experiments suggest a specific role for Ly-GDI in platelet function. Intracellular signaling studies based on interactome and pathways analyses also support a regulatory role for Ly-GDI, which is phosphorylated at PKC substrate motifs in a PKC-dependent manner in response to the platelet collagen receptor glycoprotein (GP) VI-specific agonist collagen-related peptide. Additionally, PKC inhibition diffuses the polarized organization of Ly-GDI in spread platelets relative to its colocalization with Rac1 and Cdc42. Together, our results suggest a role for Ly-GDI in the localized regulation of Rho GTPases in platelets and hypothesize a link between the PKC and Rho GTPase signaling systems in platelet function.


Platelets | 2018

Potentiation of TRAP-6-induced platelet dense granule release by blockade of P2Y12 signaling with MRS2395

Annachiara Mitrugno; Rachel A. Rigg; Nicole B. Laschober; Anh T.P. Ngo; Jiaqing Pang; Craig D. Williams; Joseph E. Aslan; Owen J. T. McCarty

Abstract The release of ADP from platelet dense granules and its binding to platelet P2Y12 receptors is key to amplifying the initial hemostatic response and propagating thrombus formation. P2Y12 has thus emerged as a therapeutic target to safely and effectively prevent secondary thrombotic events in patients with acute coronary syndrome or a history of myocardial infarction. Pharmacological inhibition of P2Y12 receptors represents a useful approach to better understand the signaling mediated by these receptors and to elucidate the role of these receptors in a multitude of platelet hemostatic and thrombotic responses. The present work examined and compared the effects of four different P2Y12 inhibitors (MRS2395, ticagrelor, PSB 0739, and AR-C 66096) on platelet function in a series of in vitro studies of platelet dense granule secretion and trafficking, calcium generation, and protein phosphorylation. Our results show that in platelets activated with the PAR-1 agonist TRAP-6 (thrombin receptor-activating peptide), inhibition of P2Y12 with the antagonist MRS2395, but not ticagrelor, PSB 0739 or AR-C 66096, potentiated human platelet dense granule trafficking to the plasma membrane and release into the extracellular space, cytosolic Ca2+ influx, and phosphorylation of GSK3β-Ser9 through a PKC-dependent pathway. These results suggest that inhibition of P2Y12 with MRS2395 may act in concert with PAR-1 signaling and result in the aberrant release of ADP by platelet dense granules, thus reducing or counteracting the anticipated anti-platelet efficacy of this inhibitor.


American Journal of Physiology-cell Physiology | 2018

Platelet procoagulant phenotype is modulated by a p38 - MK2 axis regulating RTN4/Nogo proximal to the endoplasmic reticulum: utility of pathway analysis

Özgün Babur; Anh T.P. Ngo; Rachel A. Rigg; Jiaqing Pang; Zhoe T. Rub; Ariana E. Buchanan; Annachiara Mitrugno; Larry L. David; Owen J. T. McCarty; Emek Demir; Joseph E. Aslan

Upon encountering physiological cues associated with damaged or inflamed endothelium, blood platelets set forth intracellular responses to ultimately support hemostatic plug formation and vascular repair. To gain insights into the molecular events underlying platelet function, we used a combination of interactome, pathway analysis, and other systems biology tools to analyze associations among proteins functionally modified by reversible phosphorylation upon platelet activation. While an interaction analysis mapped out a relative organization of intracellular mediators in platelet signaling, pathway analysis revealed directional signaling relations around protein kinase C (PKC) isoforms and mitogen-activated protein kinases (MAPKs) associated with platelet cytoskeletal dynamics, inflammatory responses, and hemostatic function. Pathway and causality analysis further suggested that platelets activate a specific p38-MK2 axis to phosphorylate RTN4 (reticulon-4, also known as Nogo), a Bcl-xl sequestration protein and critical regulator of endoplasmic reticulum (ER) physiology. In vitro, we find that platelets drive a p38-MK2-RTN4-Bcl-xl pathway associated with the regulation of the ER and platelet phosphatidylserine exposure. Together, our results support the use of pathway tools in the analysis of omics data sets as a means to help generate novel, mechanistic, and testable hypotheses for platelet studies while uncovering RTN4 as a putative regulator of platelet cell physiological responses.

Collaboration


Dive into the Rachel A. Rigg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anand Kolatkar

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge