Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel Abbotts is active.

Publication


Featured researches published by Rachel Abbotts.


Cancer Treatment Reviews | 2010

Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer.

Rachel Abbotts; Srinivasan Madhusudan

DNA base excision repair (BER) is critically involved in the processing of DNA base damage induced by alkylating agents. Pharmacological inhibition of BER (using PARP inhibitors), either alone or in combination with chemotherapy has recently shown promise in clinical trials. Human apurinic/apyrimidinic endonuclease 1(APE1) is an essential BER protein that is involved in the processing of potentially cytotoxic abasic sites that are obligatory intermediates in BER. Here we provide a summary of the basic mechanistic role of APE1 in DNA repair and redox regulation and highlight preclinical and clinical data that confirm APE1 as a valid anticancer drug target. Development of small molecule inhibitors of APE1 is an area of intense research and current evidence using APE1 inhibitors has demonstrated potentiation of cytotoxicity of alkylating agents in preclinical models implying translational applications in cancer patients.


International Journal of Cancer | 2012

Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors

Rebeka Sultana; Daniel R. McNeill; Rachel Abbotts; Mohammed Z. Mohammed; Małgorzata Z. Zdzienicka; Haitham Qutob; Claire Seedhouse; Charles A. Laughton; Peter Fischer; Poulam M. Patel; David M. Wilson; Srinivasan Madhusudan

An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In this study, we have investigated the ability of APE1 inhibitors to induce synthetic lethality (SL) in a panel of DNA double‐strand break (DSB) repair deficient and proficient cells; i) Chinese hamster (CH) cells: BRCA2 deficient (V‐C8), ATM deficient (V‐E5), wild type (V79) and BRCA2 revertant [V‐C8(Rev1)]. ii) Human cancer cells: BRCA1 deficient (MDA‐MB‐436), BRCA1 proficient (MCF‐7), BRCA2 deficient (CAPAN‐1 and HeLa SilenciX cells), BRCA2 proficient (PANC1 and control SilenciX cells). We also tested SL in CH ovary cells expressing a dominant‐negative form of APE1 (E8 cells) using ATM inhibitors and DNA‐PKcs inhibitors (DSB inhibitors). APE1 inhibitors are synthetically lethal in BRCA and ATM deficient cells. APE1 inhibition resulted in accumulation of DNA DSBs and G2/M cell cycle arrest. SL was also demonstrated in CH cells expressing a dominant‐negative form of APE1 treated with ATM or DNA‐PKcs inhibitors. We conclude that APE1 is a promising SL target in cancer.


British Journal of Cancer | 2010

Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers

A Al-Attar; Lucy Gossage; Khaleel R Fareed; M Shehata; M Mohammed; Abed Zaitoun; Irshad Soomro; Dileep N. Lobo; Rachel Abbotts; Stephen Chan; Srinivasan Madhusudan

Background:Altered DNA repair may be associated with aggressive tumour biology and impact upon response to chemotherapy and radiotherapy. We investigated whether expression of human AP endonuclease (APE1), a key multifunctional protein involved in DNA BER, would impact on clinicopathological outcomes in ovarian, gastro-oesophageal, and pancreatico-biliary cancer.Methods:Formalin-fixed human ovarian, gastro-oesophageal, and pancreatico-biliary cancers were constructed into TMAs. Expression of APE1 was analysed by IHC and correlated to clinicopathological variables.Results:In ovarian cancer, nuclear APE1 expression was seen in 71.9% (97 out of 135) of tumours and correlated with tumour type (P=0.006), optimal debulking (P=0.009), and overall survival (P=0.05). In gastro-oesophageal cancers previously exposed to neoadjuvant chemotherapy, 34.8% (16 out of 46) of tumours were positive in the nucleus and this correlated with shorter overall survival (P=0.005), whereas cytoplasmic localisation correlated with tumour dedifferentiation (P=0.034). In pancreatico-biliary cancer, nuclear staining was seen in 44% (32 out of 72) of tumours. Absence of cytoplasmic staining was associated with perineural invasion (P=0.007), vascular invasion (P=0.05), and poorly differentiated tumours (P=0.068). A trend was noticed with advanced stage (P=0.077).Conclusions:Positive clinicopathological correlations of APE1 expression suggest that APE1 is a potential drug target in ovarian, gastro-oesophageal, and pancreatico-biliary cancers.


Cancer Research | 2013

Targeting XRCC1 deficiency in breast cancer for personalized therapy

Rebeka Sultana; Tarek M. A. Abdel-Fatah; Rachel Abbotts; Claire Hawkes; Nada Albarakati; Claire Seedhouse; Graham Ball; Stephen Chan; Emad A. Rakha; Ian O. Ellis; Srinivasan Madhusudan

XRCC1 is a key component of DNA base excision repair, single strand break repair, and backup nonhomologous end-joining pathway. XRCC1 (X-ray repair cross-complementing gene 1) deficiency promotes genomic instability, increases cancer risk, and may have clinical application in breast cancer. We investigated XRCC1 expression in early breast cancers (n = 1,297) and validated in an independent cohort of estrogen receptor (ER)-α-negative breast cancers (n = 281). Preclinically, we evaluated XRCC1-deficient and -proficient Chinese hamster and human cancer cells for synthetic lethality application using double-strand break (DSB) repair inhibitors [KU55933 (ataxia telangectasia-mutated; ATM inhibitor) and NU7441 (DNA-PKcs inhibitor)]. In breast cancer, loss of XRCC1 (16%) was associated with high grade (P < 0.0001), loss of hormone receptors (P < 0.0001), triple-negative (P < 0.0001), and basal-like phenotypes (P = 0.001). Loss of XRCC1 was associated with a two-fold increase in risk of death (P < 0.0001) and independently with poor outcome (P < 0.0001). Preclinically, KU55933 [2-(4-Morpholinyl)-6-(1-thianthrenyl)-4H-pyran-4-one] and NU7441 [8-(4-Dibenzothienyl)-2-(4-morpholinyl)-4H-1-benzopyran-4-one] were synthetically lethal in XRCC1-deficient compared with proficient cells as evidenced by hypersensitivity to DSB repair inhibitors, accumulation of DNA DSBs, G2-M cell-cycle arrest, and induction of apoptosis. This is the first study to show that XRCC1 deficiency in breast cancer results in an aggressive phenotype and that XRCC1 deficiency could also be exploited for a novel synthetic lethality application using DSB repair inhibitors. Cancer Res; 73(5); 1621-34. ©2012 AACR.


British Journal of Cancer | 2011

Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines

Mohammed Z. Mohammed; V N Vyjayanti; Charles A. Laughton; Lodewijk V. Dekker; Peter Fischer; David M. Wilson; Rachel Abbotts; S Shah; Poulam M. Patel; I D Hickson; Srinivasan Madhusudan

Aims:Modulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy.Methods:An industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses.Results:Several specific APE1 inhibitors were isolated by this approach. The IC50 for APE1 inhibition ranged between 30 nM and 50 μM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines.Conclusions:Our study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma.


Cancer management and research | 2014

DNA repair in cancer: emerging targets for personalized therapy.

Rachel Abbotts; Nicola Thompson; Srinivasan Madhusudan

Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, in established tumors, DNA repair activity is required to counteract oxidative DNA damage that is prevalent in the tumor microenvironment. Emerging clinical data provide compelling evidence that overexpression of DNA repair factors may have prognostic and predictive significance in patients. More recently, DNA repair inhibition has emerged as a promising target for anticancer therapy. Synthetic lethality exploits intergene relationships where the loss of function of either of two related genes is nonlethal, but loss of both causes cell death. Exploiting this approach by targeting DNA repair has emerged as a promising strategy for personalized cancer therapy. In the current review, we focus on recent advances with a particular focus on synthetic lethality targeting in cancer.


Molecular Oncology | 2014

Genomic and protein expression analysis reveals flap endonuclease 1 (FEN1) as a key biomarker in breast and ovarian cancer.

Tarek M. A. Abdel-Fatah; Roslin Russell; Nada Albarakati; David J. Maloney; Dorjbal Dorjsuren; Oscar M. Rueda; Paul Moseley; Vivek Mohan; Hongmao Sun; Rachel Abbotts; Abhik Mukherjee; Devika Agarwal; Jennifer L. Illuzzi; Ajit Jadhav; Anton Simeonov; Graham Ball; Stephen Chan; Carlos Caldas; Ian O. Ellis; David M. Wilson; Srinivasan Madhusudan

FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)]. FEN1 protein expression was evaluated in 568 oestrogen receptor (ER) negative breast cancers, 894 ER positive breast cancers and 156 ovarian epithelial cancers. FEN1 mRNA overexpression was highly significantly associated with high grade (p = 4.89 × 10−57), high mitotic index (p = 5.25 × 10−28), pleomorphism (p = 6.31 × 10−19), ER negative (p = 9.02 × 10−35), PR negative (p = 9.24 × 10−24), triple negative phenotype (p = 6.67 × 10−21), PAM50.Her2 (p = 5.19 × 10−13), PAM50. Basal (p = 2.7 × 10−41), PAM50.LumB (p = 1.56 × 10−26), integrative molecular cluster 1 (intClust.1) (p = 7.47 × 10−12), intClust.5 (p = 4.05 × 10−12) and intClust. 10 (p = 7.59 × 10−38) breast cancers. FEN1 mRNA overexpression is associated with poor breast cancer specific survival in univariate (p = 4.4 × 10−16) and multivariate analysis (p = 9.19 × 10−7). At the protein level, in ER positive tumours, FEN1 overexpression remains significantly linked to high grade, high mitotic index and pleomorphism (ps < 0.01). In ER negative tumours, high FEN1 is significantly associated with pleomorphism, tumour type, lymphovascular invasion, triple negative phenotype, EGFR and HER2 expression (ps < 0.05). In ER positive as well as in ER negative tumours, FEN1 protein overexpression is associated with poor survival in univariate and multivariate analysis (ps < 0.01). In ovarian epithelial cancers, similarly, FEN1 overexpression is associated with high grade, high stage and poor survival (ps < 0.05). We conclude that FEN1 is a promising biomarker in breast and ovarian epithelial cancer.


International Journal of Cancer | 2013

Clinicopathological and functional significance of XRCC1 expression in ovarian cancer

Tarek M. A. Abdel-Fatah; Rebeka Sultana; Rachel Abbotts; Claire Hawkes; Claire Seedhouse; Stephen Chan; Srinivasan Madhusudan

X‐ray repair cross‐complementing gene 1 (XRCC1) is essential for DNA base excision repair, single strand break repair and nucleotide excision repair. We investigated clinicopathological and functional significance of XRCC1 expression in ovarian cancers. XRCC1 protein expression was evaluated in 195 consecutive human ovarian cancers and correlated with clinicopathological variables and survival outcomes. Functional preclinical studies were conducted in a panel of XRCC1 deficient and proficient Chinese hamster and Human cancer cells for cisplatin chemosensitivity. Clonogenic assay, neutral COMET assay, γH2AX immunocytochemistry and flow cytometric analyses were performed in cells. In ovarian cancer, 48% of the tumors were positive for XRCC1 expression and significantly associated with higher stage (p = 0.006), serous type tumors (p = 0.008), suboptimal de‐bulking (p = 0.004) and platinum resistance (p < 0.0001). Positive XRCC1 had twofold increase of risk of death (p = 0.007) and progression (p < 0.0001). In the multivariate Cox model, XRCC1 expression was independently associated with cancer specific [p = 0.038] and progression free survival [p = 0.003]. Preclinically, XRCC1 negative cells were sensitive to cisplatin compared to XRCC1 positive cells. Sensitivity to cisplatin in XRCC1 negative cells was associated with accumulation of DNA double strand breaks and G2/M cell cycle arrest. XRCC1 expression is associated with adverse clinicopathological and survival outcomes in patients. Preclinical data provides mechanistic functional evidence for cisplatin sensitivity in XRCC1 negative cells. XRCC1 is a promising predictive biomarker in ovarian cancer.


Current Molecular Pharmacology | 2012

Base Excision Repair Factors are Promising Prognostic and Predictive Markers in Cancer

Lucy Gossage; Christina Perry; Rachel Abbotts; Srinivasan Madhusudan

The cytotoxicity of both chemotherapy and radiotherapy is to a large extent directly related to their ability to induce DNA damage. The ability of cancer cells to recognise and repair this damage contributes to therapeutic resistance. Sub-optimal DNA repair in normal tissue may impair normal tissue tolerance. Inter-individual differences in DNA repair pathways may also influence the natural history and progression of cancer and hence prognosis. The base excision repair (BER) pathway has evolved to repair base damage induced by endogenous and exogenous base targeting agents. Polymorphic variants of genes, mRNA expression and alterations in protein expression within BER, may alter DNA repair capacity and influence both cancer progression and clinical responses to chemotherapy and radiotherapy. We discuss the role of BER genes as potential predictive and prognostic markers in human cancer and review the current state of play within this field.


Antioxidants & Redox Signaling | 2013

Are DNA repair factors promising biomarkers for personalized therapy in gastric cancer

Tarek M. A. Abdel-Fatah; Arvind Arora; Ipek Gorguc; Rachel Abbotts; Sarah Beebeejaun; Sarah J. Storr; Vivek Mohan; Claire Hawkes; Irshad Soomro; Dileep N. Lobo; Simon L. Parsons; Srinivasan Madhusudan

Chronic inflammation is a driving force for gastric carcinogenesis. Reactive oxygen species (ROS) generated during the inflammatory process generates DNA damage that is processed through the DNA repair pathways. In this study, we profiled key DNA repair proteins (single-strand-selective monofunctional uracil-DNA glycosylase 1 [SMUG1], Flap endonuclease 1 [FEN1], X-ray repair cross-complementing gene 1 [XRCC1], and Ataxia telangiectasia mutated [ATM]) involved in ROS-induced oxidative DNA damage repair in gastric cancer and correlated to clinicopathological outcomes. High expression of SMUG1, FEN1, and XRCC1 correlated to high T-stage (T3/T4) (p-values: 0.001, 0.005, and 0.02, respectively). High expression of XRCC1 and FEN1 also correlated to lymph node-positive disease (p-values: 0.009 and 0.02, respectively). High expression of XRCC1, FEN1, and SMUG1 correlated with poor disease-specific survival (DSS) (p-values: 0.001, 0.006, and 0.05, respectively) and poor disease-free survival (DFS) (p-values: 0.001, 0.001, and 0.02, respectively). Low expression of ATM correlated to lymph node positivity (p=0.03), vascular invasion (p=0.05), and perineural invasion (p=0.005) and poor DFS (p=0.001) and poor DSS (p=0.003). In the multivariate Cox model, high XRCC1 and low ATM were independently associated with poor survival (p=0.008 and 0.011, respectively). Our observation supports the hypothesis that DNA repair factors are promising biomarkers for personalized therapy in gastric cancer.

Collaboration


Dive into the Rachel Abbotts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Wilson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rebeka Sultana

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Hawkes

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Chan

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Graham Ball

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar

Ian O. Ellis

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge