Rachel Audo
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel Audo.
Arthritis & Rheumatism | 2014
C. Daien; S. Gailhac; Thibault Mura; Rachel Audo; Bernard Combe; Michael Hahne; Jacques Morel
Regulatory interleukin‐10 (IL‐10)–producing B cells (B10 cells) have been shown to prevent and cure collagen‐induced arthritis in mice. In humans, very little is known about B10 cells in rheumatoid arthritis (RA). Several B cell subsets, such as CD24highCD38high, CD24highCD27+, and CD5+ B cells, were suggested to be precursors of B10 cells. We aimed to analyze these B cell subsets and B10 cells in RA patients and healthy controls.
Cell Death & Differentiation | 2009
Rachel Audo; Bernard Combe; B Coulet; Jacques Morel; Michael Hahne
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has gained much attention as a possible therapeutic reagent for the treatment of tumors, as TRAIL was originally described to induce apoptosis specifically in cancer cells, but not in normal cells. Fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA) patients exhibit tumor-like features and we have described earlier that TRAIL induces apoptosis only in a subset of RA FLS, but an induction of proliferation in the surviving cells. This observation corresponds to the pleiotropic effects of TRAIL observed on primary human tumor cells. Here, we describe that the PI3 kinase/Akt-signaling pathway, but not that of the MAP kinases ERK and p38, protects RA FLS from TRAIL-induced apoptosis by modulating the expression of the cell survival regulators p21, XIAP, Mcl-1 and RIP. Moreover, we found that not only TRAIL-induced apoptosis, but also TRAIL-triggered proliferation in RA FLS is mediated by caspases with a crucial role for caspase 8. TRAIL was found to induce degradation of p21 and p27 that was caspase-dependent, but independent of the ERK, p38 and PI3 kinase/Akt-signaling pathways. The finding that TRAIL-triggered proliferation and apoptosis share intracellular routes has to be taken in consideration in defining therapeutic strategies on the basis of the administration of TRAIL.
Arthritis & Rheumatism | 2011
Rachel Audo; Flavia Calmon-Hamaty; Dominique Baeten; Angelique Bruyer; Bernard Combe; Michael Hahne; Jacques Morel
OBJECTIVE Results of studies in mice suggest a protective role for TRAIL in arthritis. The aim of this study was to investigate the role of TRAIL in patients with rheumatoid arthritis (RA). METHODS In the present study, we compared RA fibroblast-like synoviocytes (FLS) that were resistant or sensitive to TRAIL-induced apoptosis and the expression of TRAIL receptors in these cells, and also investigated the clinical features of the patients from whom the FLS were derived. Furthermore, we evaluated the levels of TRAIL and its soluble decoy receptor osteoprotegerin (OPG) in patients with RA, patients with osteoarthritis (OA), and patients with spondylarthritis (SpA). RESULTS Sensitivity to TRAIL-induced apoptosis varied in FLS from different patients, and the severity of disease in patients with RA was inversely correlated with the susceptibility of their FLS to TRAIL-induced apoptosis. TRAIL-sensitive cells expressed significantly lower levels of TRAILR-1, and silencing of TRAILR-1 increased TRAIL-induced apoptosis in RA FLS. TRAIL levels were elevated in the arthritic joints of patients with established RA, and TRAIL levels in the synovial fluid of these patients were elevated compared with levels in the synovial fluid of patients with OA or SpA. At baseline, a low OPG-to-TRAIL ratio in the sera of patients with early RA was associated with a better evolution of disease activity, but high serum levels of TRAIL at followup were associated with joint damage. CONCLUSION These findings suggest that TRAIL has a dual role in RA, and that the resistance of RA FLS to TRAIL-induced apoptosis is associated with a disease-promoting activity of TRAIL in RA.
Cytokine | 2013
Rachel Audo; Bernard Combe; Michael Hahne; Jacques Morel
The TNF-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily that has been recognized for its specific pro-apoptotic effect on cancer cells and has been therefore proposed as a treatment in cancer. Studies on animal models have shown that TRAIL could also have a beneficial effect in rheumatoid arthritis (RA). This includes reports suggesting that TRAIL could be used to control the synovial hyperplasia and hyperactivation of immune cells observed in RA, but recent reports suggest a disease promoting role of TRAIL in RA. Indeed, adverse effects and mechanism of resistance could counteract beneficial effect of TRAIL. This review focuses on the role of TRAIL in immune regulation, synovial hyperplasia and joint remodeling in RA. We will also discuss the potential use of TRAIL in RA treatment.
Cytokine | 2015
Flavia Calmon-Hamaty; Rachel Audo; Bernard Combe; Jacques Morel; Michael Hahne
Rheumatoid Arthritis (RA) is a chronic inflammatory disease affecting synovial joints. Tumor necrosis factor (TNF) α is a key component of RA pathogenesis and blocking this cytokine is the most common strategy to treat the disease. Though TNFα blockers are very efficient, one third of the RA patients are unresponsive or present side effects. Therefore, the development of novel therapeutic approaches is required. RA pathogenesis is characterized by the hyperplasia of the synovium, closely associated to the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLS), which invade and destroy the joint structure. Hence, depletion of RA FLS has been proposed as an alternative therapeutic strategy. The TNF family member Fas ligand (FasL) was reported to trigger apoptosis in FLS of arthritic joints by binding to its receptor Fas and therefore suggested as a promising candidate for targeting the hyperplastic synovial tissue. However, this cytokine is pleiotropic and recent data from the literature indicate that Fas activation might have a disease-promoting role in RA by promoting cell proliferation. Therefore, a FasL-based therapy for RA requires careful evaluation before being applied. In this review we aim to overview what is known about the apoptotic and non-apoptotic effects of Fas/FasL system and discuss its relevance in RA.
Arthritis Research & Therapy | 2007
Rachel Audo; Véronique Deschamps; Michael Hahne; Bernard Combe; Jacques Morel
Synovial hyperplasia in rheumatoid arthritis (RA) has been associated with apoptosis deficiency of RA fibroblast-like synoviocytes (FLSs). Celecoxib is a non-steroidal anti-inflammatory drug that has been demonstrated to induce apoptosis in some cellular systems. We have therefore examined the dose- and time-dependent effects of celecoxib on RA FLS viability. Treatment of RA FLSs with celecoxib for 24 hours reduced their viability in a dose-dependent manner. Analysis of celecoxib-treated RA FLSs for their content of apoptotic and necrotic cells by Annexin V staining and TO-PRO-3 uptake displayed only few apoptotic cells. Caspase 3, a key mediator of apoptosis, was not activated in celecoxib-treated RA FLSs, and the presence of specific caspase 3 or pan-caspase inhibitors did not affect celecoxib-induced cell death. Moreover, we could not detect other signs of apoptosis, such as cleavage of poly(ADP-ribose) polymerase, caspase 8 or 9, or DNA fragmentation. We therefore conclude that apoptosis is not the major death pathway in celecoxib-treated RA FLSs.
Arthritis Research & Therapy | 2015
Rachel Audo; C. Daien; Laura Papon; Cédric Lukas; Olivier Vittecoq; Michael Hahne; Bernard Combe; Jacques Morel
IntroductionWe previously reported that low ratio of osteoprotegerin (OPG) to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was associated with Disease Activity Score in 28 joints (DAS28) remission at 6 months in patients with early rheumatoid arthritis (RA). Here, we aimed to evaluate the value of baseline OPG/TRAIL ratio in predicting clinical and radiological outcomes in patients with early RA in the ESPOIR cohort.MethodsOPG and TRAIL serum concentrations were assessed in the ESPOIR cohort patients. Patients with definite RA were included in this study. Patients were excluded if they had high erosion score at baseline (>90th percentile) or received biological therapy during the first 2 years of follow-up. Data were analyzed by univariate analysis and multivariate logistic regression to predict 1-year DAS28 remission and 2-year radiographic disease progression.ResultsOn univariate analysis of 399 patients, OPG/TRAIL ratio at baseline was significantly lower in patients with than without remission at 1 year (p = 0.015). On multivariate logistic regression including age, gender, body mass index and DAS28, low OPG/TRAIL ratio was independently associated with remission at 1 year (odds ratio 1.68 [95 % confidence interval 1.01–2.79]). On univariate analysis, high OPG/TRAIL ratio at baseline was associated with rapid progression of erosion at 2 years (p = 0.041), and on multivariate logistic regression including age, anti-citrullinated protein antibody positivity and C-reactive protein level, OPG/TRAIL ratio independently predicted rapid progression of erosion at 2 years.ConclusionsOPG/TRAIL ratio at baseline was an independent predictor of 1-year remission and 2-year rapid progression of erosion for patients with early rheumatoid arthritis. Thus, OPG/TRAIL ratio could be included in matrix prediction scores to predict rapid radiographic progression. Further confirmation in an independent cohort is warranted.
Arthritis & Rheumatism | 2014
Rachel Audo; Flavia Calmon-Hamaty; Laura Papon; Bernard Combe; Jacques Morel; Michael Hahne
Injection of agonistic anti‐Fas antibody has been shown to decrease disease symptoms in mouse models of arthritis. Additionally, membrane‐bound FasL (mFasL) has been shown to induce cell death in fibroblast‐like synoviocytes (FLS) from rheumatoid arthritis (RA) patients. However, levels of soluble FasL (sFasL) are increased in the joints of RA patients and have been associated with disease severity, indicating that mFasL and sFasL play opposing roles in RA. The purpose of this study was to analyze the effects of FasL on RA FLS responses.
PLOS ONE | 2018
Rachel Audo; Valérie Deckert; C. Daien; H. Che; Jamila Elhmioui; Stéphanie Lemaire; Jean-Paul Pais de Barros; Catherine Desrumaux; Bernard Combe; Michael Hahne; Laurent Lagrost; Jacques Morel
Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease with modification of lipids profile and an increased risk of cardiovascular events related to inflammation. Plasma phospholipid transfer protein (PLTP) exerts a lipid transfer activity through its active form. PLTP can also bind to receptors such as ATP-binding cassette transporter A1 (ABCA1). In addition to its role in lipoprotein metabolism and atherosclerosis, the latest advances came in support of a complex role of PLTP in the regulation of the inflammatory response, both with pro-inflammatory or anti-inflammatory properties. The aim of the present study was to decipher the role of PLTP in joint inflammation and to assess its relevance in the context of RA. PLTP expression was examined by western-blot and by immunochemistry. ABCA1 expression was analyzed by flow cytometry. Lipid transfer activity of PLTP and pro-inflammatory cytokines were measured in sera and synovial fluid (SF) from RA patients and controls (healthy subjects or osteoarthritis patients [OA]). FLS were treated with both lipid-transfer active form and inactive form of recombinant human PLTP. IL-8, IL-6, VEGF and MMP3 produced by FLS were assessed by ELISA, and proliferation by measuring 3H-Thymidine incorporation. RA synovial tissues showed higher PLTP staining than OA and PLTP protein levels were also significantly higher in RA-FLS. In addition, RA, unlike OA patients, displayed elevated levels of PLTP activity in SF, which correlated with pro-inflammatory cytokines. Both lipid-transfer active and inactive forms of PLTP significantly increased the production of cytokines and proliferation of FLS. ABCA1 was expressed on RAFLS and PLTP activated STAT3 pathway. To conclude, PLTP is highly expressed in the joints of RA patients and may directly trigger inflammation and FLS proliferation, independently of its lipid transfer activity. These results suggest a pro-inflammatory role for PLTP in RA.
PLOS ONE | 2017
Sarah Marouen; Guilhem du Cailar; Rachel Audo; Cédric Lukas; Gaelle Vial; Anne Tournadre; Emmanuel Barrat; Jean Ribstein; Bernard Combe; Jacques Morel; C. Daien
Objective It was shown that sodium can promote auto-immunity through the activation of the Th17 pathway. We aimed to compare sodium intake in patients with rheumatoid arthritis (RA) vs. matched controls. Methods This case-control study included 24 patients with RA at diagnosis and 24 controls matched by age, gender and body mass index. Sodium intake was evaluated by 24-hr urinary sodium excretion. Results Sodium excretion was greater for patients with early RA (2,849±1,350 vs. 2,182±751.7mg/day, p = 0.039) than controls. This difference remained significant after adjustment for smoking and the use of anti-hypertensive and nonsteroidal anti-inflammatory drugs (p = 0.043). Patients with radiographic erosion at the time of diagnosis had a higher sodium excretion than those without (p = 0.028). Conclusion Patients with early RA showed increased sodium excretion which may have contributed to autoimmunity.