Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel Butler is active.

Publication


Featured researches published by Rachel Butler.


Nature Reviews Neuroscience | 2006

Histone deacetylase inhibitors as therapeutics for polyglutamine disorders

Rachel Butler; Gillian P. Bates

During the past 5 years, gene expression studies in cell culture, animal models and in the brains of patients have shown that the perturbation of transcription frequently results in neuronal dysfunction in polyglutamine repeat diseases such as Huntingtons disease. Histone deacetylases act as repressors of transcription through interactions with co-repressor complexes, which leads to chromatin remodelling. Aberrant interactions between polyglutamine proteins and regulators of transcription could be one mechanism by which transcriptional dysregulation occurs. Here, we discuss the potential therapeutic pathways through which histone deacetylase inhibitors might act to correct the aberrant transcription observed in Huntingtons disease and other polyglutamine repeat diseases.


European Journal of Human Genetics | 2005

Early onset seizures and Rett-like features associated with mutations in CDKL5

Julie Evans; Hayley Archer; James Colley; Kirstine Ravn; Jytte Bieber Nielsen; Alison Kerr; Elizabeth Williams; John Christodoulou; Jozef Gecz; Philip E. Jardine; Michael Wright; Daniela T. Pilz; L. Lazarou; David Neil Cooper; Julian Roy Sampson; Rachel Butler; Sharon D. Whatley; Angus John Clarke

Mutations in the CDKL5 gene (also known as STK9) have recently been shown to cause early onset epilepsy and severe mental retardation (ISSX or West syndrome). Patients with CDKL5 mutations sometimes also show features similar to those seen in Rett Syndrome (RTT). We have screened the CDKL5 gene in 94 patients with RTT or a RTT-like phenotype who had tested negative for MECP2 mutations (13 classical RTT female subjects, 25 atypical RTT female subjects, 40 RTT-like female and 16 RTT-like male subjects; 33 of the patients had early onset seizures). Novel pathogenic CDKL5 mutations were identified in three girls, two of whom had initially been diagnosed with the early onset seizure variant of RTT and the other with early onset seizures and some features of RTT. In addition, the 33 patients with early seizures were screened for the most common mutations in the ARX gene but none were found. Combining our three new cases with the previously published cases, 13/14 patients with CDKL5 mutations presented with seizures before the age of 3 months.


Brain Research Bulletin | 2007

The HdhQ150/Q150 knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes

Ben Woodman; Rachel Butler; Christian Landles; Michelle K. Lupton; Jamie Tse; Emma Hockly; Hilary Moffitt; Kirupa Sathasivam; Gillian P. Bates

The identification of the Huntingtons disease (HD) mutation as a CAG/polyglutamine repeat expansion enabled the generation of transgenic rodent models and gene-targeted mouse models of HD. Of these, mice that are transgenic for an N-terminal huntingtin fragment have been used most extensively because they develop phenotypes with relatively early ages of onset and rapid disease progression. Although the fragment models have led to novel insights into the pathophysiology of HD, it is important that models expressing a mutant version of the full-length protein are analysed in parallel. We have generated congenic C57BL/6 and CBA strains for the HdhQ150 knock-in mouse model of HD so that homozygotes can be analysed on an F1 hybrid background. Although a significant impairment in grip strength could be detected from a very early age, the performance of these mice in the quantitative behavioural tests most frequently used in preclinical efficacy trials indicates that they are unlikely to be useful for preclinical screening using a battery of conventional tests. However, at 22 months of age, the Hdh(Q150/Q150) homozygotes showed unexpected widespread aggregate deposition throughout the brain, transcriptional dysregulation in the striatum and cerebellum and decreased levels of specific chaperones, all well-characterised molecular phenotypes present in R6/2 mice aged 12 weeks. Therefore, when strain background and CAG repeat length are controlled for, the knock-in and fragment models develop comparable phenotypes. This supports the continued use of the more high-throughput fragment models to identify mechanisms of pathogenesis and for preclinical screening.


Oncogene | 2000

Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells

Fengge Ren; Shaobo Zhang; Susan H. Mitchell; Rachel Butler; Charles Y. F. Young

Androgens via their cognate receptor may be involved in the development and progression of prostate cancer. The aim of this study was to determine whether tea polyphenols have inhibitory effects on androgen action in an androgen-responsive, prostate cancer cell line, LNCaP. The tea polyphenol, EGCG, inhibited LNCaP cell growth and the expression of androgen regulated PSA and hK2 genes. Moreover, EGCG had a significant inhibitory effect on the androgenic inducibility of the PSA promoter. Immunoblotting detected a decrease in androgen receptor protein with treatments of the tea polyphenols EGCG, GCG and theaflavins. Northern blot analysis showed decreased levels of androgen receptor mRNA by EGCG. Transient transfections demonstrated that EGCG and theaflavins could repress the transcriptional activities of the androgen receptor promoter region. An Sp1 binding site in the androgen receptor gene promoter is an important regulatory component for its expression. This study suggests Sp1 is the target for the tea polyphenols because treatments of EGCG decreased the expression, DNA binding activity and transactivation activity of Sp1 protein. In conclusion, we have described a new property of tea polyphenols that inhibits androgen action by repressing the transcription of the androgen receptor gene.


PLOS Biology | 2013

HDAC4 Reduction: A Novel Therapeutic Strategy to Target Cytoplasmic Huntingtin and Ameliorate Neurodegeneration

Michal Mielcarek; Christian Landles; Andreas Weiss; Amyaouch Bradaia; Tamara Seredenina; Linda Inuabasi; Georgina F. Osborne; Kristian Wadel; Rachel Butler; Janette Robertson; Sophie A. Franklin; Donna L. Smith; Larry Park; Paul A. Marks; Erich E. Wanker; Eric N. Olson; Ruth Luthi-Carter; Herman van der Putten; Vahri Beaumont; Gillian P. Bates

HDAC4 histone deacetylase is found to associate with huntingtin in a polyQ-length dependent manner. Reduction of HDAC4 levels in mouse models of Huntingtons disease (HD) delays cytoplasmic aggregation in the brain and improves the molecular pathology of HD, providing a potential new therapeutic target.


Journal of Medical Genetics | 2005

Gross rearrangements of the MECP2 gene are found in both classical and atypical Rett syndrome patients

Hayley Archer; Sharon D. Whatley; Julie Evans; David Ravine; Peter Huppke; Alison M. Kerr; David J. Bunyan; Bronwyn Kerr; Elizabeth Sweeney; Sally Davies; W. Reardon; J. Horn; K. D. MacDermot; R. A. Smith; A. Magee; A. Donaldson; Yanick J. Crow; G. Hermon; Zosia Miedzybrodzka; David Neil Cooper; L. Lazarou; Rachel Butler; Julian Roy Sampson; Daniela T. Pilz; Franco Laccone; Angus John Clarke

MECP2 mutations are identifiable in ∼80% of classic Rett syndrome (RTT), but less frequently in atypical RTT. We recruited 110 patients who fulfilled the diagnostic criteria for Rett syndrome and were referred to Cardiff for molecular analysis, but in whom an MECP2 mutation was not identifiable. Dosage analysis of MECP2 was carried out using multiplex ligation dependent probe amplification or quantitative fluorescent PCR. Large deletions were identified in 37.8% (14/37) of classic and 7.5% (4/53) of atypical RTT patients. Most large deletions contained a breakpoint in the deletion prone region of exon 4. The clinical phenotype was ascertained in all 18 of the deleted cases and in four further cases with large deletions identified in Goettingen. Five patients with large deletions had additional congenital anomalies, which was significantly more than in RTT patients with other MECP2 mutations (2/193; p<0.0001). Quantitative analysis should be included in molecular diagnostic strategies in both classic and atypical RTT.


PLOS ONE | 2009

Genetic Knock-Down of HDAC7 Does Not Ameliorate Disease Pathogenesis in the R6/2 Mouse Model of Huntington's Disease

Caroline L. Benn; Rachel Butler; Lydia Mariner; Jude Nixon; Hilary Moffitt; Michal Mielcarek; Ben Woodman; Gillian P. Bates

Huntingtons disease (HD) is an inherited, progressive neurological disorder caused by a CAG/polyglutamine repeat expansion, for which there is no effective disease modifying therapy. In recent years, transcriptional dysregulation has emerged as a pathogenic process that appears early in disease progression. Administration of histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) have consistently shown therapeutic potential in models of HD, at least partly through increasing the association of acetylated histones with down-regulated genes and by correcting mRNA abnormalities. The HDAC enzyme through which SAHA mediates its beneficial effects in the R6/2 mouse model of HD is not known. Therefore, we have embarked on a series of genetic studies to uncover the HDAC target that is relevant to therapeutic development for HD. HDAC7 is of interest in this context because SAHA has been shown to decrease HDAC7 expression in cell culture systems in addition to inhibiting enzyme activity. After confirming that expression levels of Hdac7 are decreased in the brains of wild type and R6/2 mice after SAHA administration, we performed a genetic cross to determine whether genetic reduction of Hdac7 would alleviate phenotypes in the R6/2 mice. We found no improvement in a number of physiological or behavioral phenotypes. Similarly, the dysregulated expression levels of a number of genes of interest were not improved suggesting that reduction in Hdac7 does not alleviate the R6/2 HD-related transcriptional dysregulation. Therefore, we conclude that the beneficial effects of HDAC inhibitors are not predominantly mediated through the inhibition of HDAC7.


Journal of Clinical Pathology | 2014

RAS testing of colorectal carcinoma—a guidance document from the Association of Clinical Pathologists Molecular Pathology and Diagnostics Group

Newton A C S Wong; David Gonzalez; Manuel Salto-Tellez; Rachel Butler; Salvador Diaz-Cano; Mohammad Ilyas; William G. Newman; Emily Shaw; Philippe Taniere; Shaun V. Walsh

Analysis of colorectal carcinoma (CRC) tissue for KRAS codon 12 or 13 mutations to guide use of anti-epidermal growth factor receptor (EGFR) therapy is now considered mandatory in the UK. The scope of this practice has been recently extended because of data indicating that NRAS mutations and additional KRAS mutations also predict for poor response to anti-EGFR therapy. The following document provides guidance on RAS (i.e., KRAS and NRAS) testing of CRC tissue in the setting of personalised medicine within the UK and particularly within the NHS. This guidance covers issues related to case selection, preanalytical aspects, analysis and interpretation of such RAS testing.


Lancet Oncology | 2014

Intermittent chemotherapy plus either intermittent or continuous cetuximab for first-line treatment of patients with KRAS wild-type advanced colorectal cancer (COIN-B): a randomised phase 2 trial

Harpreet Wasan; Angela M. Meade; Richard Adams; Richard Wilson; Cheryl Pugh; David E. Fisher; Benjamin Sydes; Ayman Madi; Bruce Sizer; Charles Lowdell; Gary Middleton; Rachel Butler; Richard F. Kaplan; Tim Maughan

Summary Background Advanced colorectal cancer is treated with a combination of cytotoxic drugs and targeted treatments. However, how best to minimise the time spent taking cytotoxic drugs and whether molecular selection can refine this further is unknown. The primary aim of this study was to establish how cetuximab might be safely and effectively added to intermittent chemotherapy. Methods COIN-B was an open-label, multicentre, randomised, exploratory phase 2 trial done at 30 hospitals in the UK and one in Cyprus. We enrolled patients with advanced colorectal cancer who had received no previous chemotherapy for metastases. Randomisation was done centrally (by telephone) by the Medical Research Council Clinical Trials Unit using minimisation with a random element. Treatment allocation was not masked. Patients were assigned (1:1) to intermittent chemotherapy plus intermittent cetuximab or to intermittent chemotherapy plus continuous cetuximab. Chemotherapy was FOLFOX (folinic acid and oxaliplatin followed by bolus and infused fluorouracil). Patients in both groups received FOLFOX and weekly cetuximab for 12 weeks, then either had a planned interruption (those taking intermittent cetuximab) or planned maintenance by continuing on weekly cetuximab (continuous cetuximab). On RECIST progression, FOLFOX plus cetuximab or FOLFOX was recommenced for 12 weeks followed by further interruption or maintenance cetuximab, respectively. The primary outcome was failure-free survival at 10 months. The primary analysis population consisted of patients who completed 12 weeks of treatment without progression, death, or leaving the trial. We tested BRAF and NRAS status retrospectively. The trial was registered, ISRCTN38375681. Findings We registered 401 patients, 226 of whom were enrolled. Results for 169 with KRAS wild-type are reported here, 78 (46%) assigned to intermittent cetuximab and 91 (54%) to continuous cetuximab. 64 patients assigned to intermittent cetuximab and 66 of those assigned to continuous cetuximab were included in the primary analysis. 10-month failure-free survival was 50% (lower bound of 95% CI 39) in the intermittent group versus 52% (lower bound of 95% CI 41) in the continuous group; median failure-free survival was 12·2 months (95% CI 8·8–15·6) and 14·3 months (10·7–20·4), respectively. The most common grade 3–4 adverse events were skin rash (21 [27%] of 77 patients vs 20 [22%] of 92 patients), neutropenia (22 [29%] vs 30 [33%]), diarrhoea (14 [18%] vs 23 [25%]), and lethargy (20 [26%] vs 19 [21%]). Interpretation Cetuximab was safely incorporated in two first-line intermittent chemotherapy strategies. Maintenance of biological monotherapy, with less cytotoxic chemotherapy within the first 6 months, in molecularly selected patients is promising and should be validated in phase 3 trials. Funding UK Medical Research Council, Merck KGaA.


European Journal of Human Genetics | 2005

Variation in exon 1 coding region and promoter of MECP2 in Rett syndrome and controls

Julie Evans; Hayley Archer; Sharon D. Whatley; Alison Kerr; Angus John Clarke; Rachel Butler

Mutations in MECP2 are a cause of Rett syndrome. Recently, a new isoform of MeCP2 was described, which has an alternative N-terminus, transcribed from exon 1. We screened exon 1 and the promoter region of MECP2 in 97 mutation-negative Rett syndrome cases. We found two sequence variants, but there was no evidence that they are pathogenic. Mutations in exon 1 and the promoter of MECP2 are not a common cause of Rett syndrome.

Collaboration


Dive into the Rachel Butler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rick A. Adams

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gillian P. Bates

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Richard Wilson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Zandra C. Deans

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

David Gonzalez de Castro

The Royal Marsden NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge