Rachel Cassidy
Queen's University Belfast
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel Cassidy.
Science of The Total Environment | 2017
Rachel Cassidy; Donnacha G. Doody; Catherine J. Watson
Rates and quantities of legacy soil phosphorus (P) lost from agricultural soils, and the timescales for positive change to water quality, remain unclear. From 2000 to 2004 five 0.2ha grazed grassland plots located on a drumlin hillslope in Northern Ireland, received chemical fertiliser applications of 0, 10, 20, 40, 80kgPha-1yr-1 resulting in soil Olsen P concentrations of 19, 24, 28, 38 and 67mgPL-1, respectively, after which applications ceased. Soil Olsen P and losses to overland flow and drainage were monitored from 2005 to 2011 on an event and weekly flow proportional basis, respectively. Soluble reactive P and total P time series were synchronised with daily rainfall and modelled soil moisture deficits. From 2005 to 2011 soil Olsen P decline was proportional to soil P status with a 43% reduction in the plot at 67mgPL-1 in 2004 and a corresponding 12% reduction in the plot with lowest soil P. However, there was no significant difference in the flow-weighted mean concentration for overland flow among plots, all of which exceeded 0.035mgL-1 in >98% of events. Strong interannual and event variations in losses were observed with up to 65% of P being lost during a single rainfall event. P concentrations in drainage flow were independent of Olsen P and drain efficiency was potentially the primary control on concentrations, with the highest concentrations recorded in the plot at 38mgL-1 Olsen P in 2004 (up to 2.72mgL-1). Hydrological drivers, particularly antecedent soil moisture, had a strong influence on P loss in both overland and drainage flow, with higher concentrations recorded above a soil moisture deficit threshold of 7mm. This study demonstrates that on some soil types, legacy P poses a significant long term threat to water quality, even at agronomically optimum soil P levels.
Science of The Total Environment | 2014
John Caulfield; Merlyn Chelliah; Jean-Christophe Comte; Rachel Cassidy; Raymond Flynn
Identifying groundwater contributions to baseflow forms an essential part of surface water body characterisation. The Gortinlieve catchment (5 km(2)) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite-montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently form the chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems.
Geological Society, London, Special Publications | 2018
Jean-Christophe Comte; Ulrich Ofterdinger; A. Legchenko; John Caulfield; Rachel Cassidy; J. A. Mézquita González
Abstract Groundwater pathways and residence times are controlled by aquifer flow and storage properties, which, in weathered/fractured hard rock aquifers, are characterized by high spatial heterogeneity. Building on earlier work in a metamorphic aquifer in NW Ireland, new clay mineralogy and analyses of geophysical data provided high spatial resolution constraints on the variations in aquifer properties. Groundwater storage values derived from magnetic resonance sounding and electrical resistivity tomography were found to largely vary laterally and with depth, by orders of magnitude. The subsequent implementation of hillslope, two-dimensional numerical groundwater models showed that incorporating heterogeneity from geophysical data in model parametrization led to the best fit to observations compared with a reference model based on borehole data alone. Model simulations further revealed that (1) strong spatial heterogeneity produces deeper, longer groundwater flow paths and higher age mixing, in agreement with the mixed sub-modern/modern ages (mostly <50 years) provided by independent tritium data, and (2) areas with extensive weathering/fracturing are correlated with seepage zones of older groundwater resulting from changes in the flow directions and are likely to act as drainage structures for younger groundwater on a catchment or regional scale. Implications for groundwater resilience to climate extremes and surface pollution are discussed together with recommendations for further research.
Journal of Hydrology | 2011
Rachel Cassidy; Phil Jordan
Hydrology and Earth System Sciences | 2011
Phil Jordan; Rachel Cassidy
Science of The Total Environment | 2014
Joshua Thompson; Rachel Cassidy; Donnacha G. Doody; Raymond Flynn
Journal of Hydrology | 2014
Rachel Cassidy; Jean-Christophe Comte; Janka Nitsche; Chris Wilson; Raymond Flynn; Ulrich Ofterdinger
Agriculture, Ecosystems & Environment | 2013
Joshua Thompson; Rachel Cassidy; Donnacha G. Doody; Raymond Flynn
Journal of Hydrology: Regional Studies | 2016
Jean-Christophe Comte; Rachel Cassidy; Joy Obando; Nick Robins; Kassim Ibrahim; Simon Melchioly; Ibrahimu Chikira Mjemah; Halimu Shauri; Anli Bourhane; Ibrahim Mohamed; Christine Noe; Beatrice Mwega; Mary Makokha; Jean-Lambert Join; Olivier Banton; Jeffrey Davies
Hydrogeology Journal | 2012
Jean-Christophe Comte; Rachel Cassidy; Janka Nitsche; Ulrich Ofterdinger; Katarina Pilatova; Raymond Flynn