Rachel Drummond
Belgian Institute for Space Aeronomy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel Drummond.
Journal of Geophysical Research | 2008
Ann Carine Vandaele; M. De Mazière; Rachel Drummond; Arnaud Mahieux; Eddy Neefs; Valérie Wilquet; Oleg Korablev; Anna Fedorova; Denis V. Belyaev; Franck Montmessin
Solar Occultation at Infrared (SOIR), which is a part of the Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) instrument on board Venus Express, combines an echelle-grating spectrometer with an acoustooptical tunable filter. It performs solar occultation measurements in the IR region at a high spectral resolution better than all previously flown planetary spectrometers. The wavelength range probed allows for a detailed chemical inventory of the Venus atmosphere above the cloud layer, with an emphasis on the vertical distribution of the gases. A general description of the retrieval technique is given and is illustrated by some results obtained for CO2 and for a series of minor constituents, such as H2O, HDO, CO, HCl, and HF. Detection limits for previously undetected species will also be discussed.
Journal of Geophysical Research | 2009
Valérie Wilquet; Anna Fedorova; Frank Montmessin; Rachel Drummond; Arnaud Mahieux; Ann Carine Vandaele; Eric Villard; Oleg Korablev
The Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus/Solar Occultation at Infrared (SPICAV/SOIR) suite of instruments onboard the Venus Express spacecraft comprises three spectrometers covering a wavelength range from ultraviolet to midinfrared and an altitude range from 70 to >100 km. However, it is only recently (more than 1 year after the beginning of the mission) that the three spectrometers can operate simultaneously in the solar occultation mode. These observations have enabled the study of the properties of the Venusian mesosphere over a broad spectral range. In this manuscript, we briefly describe the instrument characteristics and the method used to infer haze microphysical properties from a data set of three selected orbits. Discussion focuses on the wavelength dependence of the continuum, which is primarily shaped by the extinction caused by the aerosol particles of the upper haze. This wavelength dependence is directly related to the effective particle radius (cross section weighted mean radius) of the particles. Through independent analyses for the three channels, we demonstrate the potential to characterize the aerosols in the mesosphere of Venus. The classical assumption that the upper haze is only composed of submicron particles is not sufficient to explain the observations. We find that at high northern latitudes, two types of particles coexist in the upper haze of Venus: mode 1 of mean radius 0.1 ≤ rg ≤ 0.3 μm and mode 2 of 0.4 ≤ rg ≤ 1.0 μm. An additional population of micron-sized aerosols seems, therefore, needed to reconcile the data of the three spectrometers. Moreover, we observe substantial temporal variations of aerosol extinction over a time scale of 24 h.
Journal of Geophysical Research | 2010
Arnaud Mahieux; Ann Carine Vandaele; Eddy Neefs; Séverine Robert; Valérie Wilquet; Rachel Drummond; A. Federova
The SOIR instrument, flying on board Venus Express, operates in the infrared spectral domain and uses the solar occultation technique to determine the vertical profiles of several key constituents of the Venus atmosphere. The retrieval algorithm is based on the optimal estimation method, and solves the problem simultaneously on all spectra belonging to one occultation sequence. Vertical profiles of H2O, CO, HCl, and HF, as well as some of their isotopologues, are routinely obtained for altitudes ranging typically from 70 to 120 km, depending on the species and the spectral region recorded. In the case of CO2, a vertical profile from 70 up to 150 km can be obtained by combining different spectral intervals. Rotational temperature is also retrieved directly from the CO2 signature in the spectra. The present paper describes the method used to derive the above mentioned atmospheric quantities and temperature profiles. The method is applied on some retrieval cases illustrating the capabilities of the technique. More examples of results will be presented and discussed in a following companion paper which will focus on the CO2 vertical profiles of the whole data set.
Optics Express | 2009
Arnaud Mahieux; Valérie Wilquet; Rachel Drummond; Denis Belyaev; A. Federova; Ann Carine Vandaele
The current study describes the determination of the transfer function of an Acousto Optical Tunable Filter from the in-flight solar observations of the SOIR instrument on board Venus Express. An approach is proposed in order to reconstruct the transfer function profile from the analysis of various solar lines. Moreover this technique allows the determination of the evolution of the transfer function as a function of the AOTF radio frequency.
Applied Optics | 2015
Eddy Neefs; Ann Carine Vandaele; Rachel Drummond; Ian R. Thomas; Sophie Berkenbosch; Roland Clairquin; Sofie Delanoye; Bojan Ristic; Jeroen Maes; Sabrina Bonnewijn; Gerry Pieck; Eddy Equeter; C. Depiesse; Frank Daerden; Emiel Van Ransbeeck; D. Nevejans; J. Rodriguez-Gomez; J. J. Lopez-Moreno; Rosario Sanz; Rafael Talero Morales; Gian Paolo Candini; M. Carmen Pastor-Morales; Beatriz Aparicio del Moral; José-Maria Jeronimo-Zafra; Juan Manuel Gómez-López; Gustavo Alonso-Rodrigo; Isabel Pérez-Grande; Javier Cubas; Alejandro M. Gomez-Sanjuan; Fermín Navarro-Medina
NOMAD is a spectrometer suite on board ESAs ExoMars trace gas orbiter due for launch in January 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at dayside and nightside, and during solar occultations. In this paper, the design, manufacturing, and testing of the two infrared channels are described. We focus upon the optical working principle in these channels, where an echelle grating, used as a diffractive element, is combined with an acousto-optical tunable filter, used as a diffraction order sorter.
Optics Express | 2015
Ann Carine Vandaele; Yannick Willame; C. Depiesse; Ian R. Thomas; Séverine Robert; D. Bolsée; Manish R. Patel; Jon Mason; M. R. Leese; Stefan Lesschaeve; Philippe Antoine; Frank Daerden; Sofie Delanoye; Rachel Drummond; Eddy Neefs; Bojan Ristic; J. J. Lopez-Moreno; G. Bellucci; Nomad Team
The NOMAD instrument has been designed to best fulfil the science objectives of the ExoMars Trace Gas Orbiter mission that will be launched in 2016. The instrument is a combination of three channels that cover the UV, visible and IR spectral ranges and can perform solar occultation, nadir and limb observations. In this series of two papers, we present the optical models representing the three channels of the instrument and use them to determine signal to noise levels for different observation modes and Martian conditions. In this first part, we focus on the UVIS channel, which will sound the Martian atmosphere using nadir and solar occultation viewing modes, covering the 200-650nm spectral range. High SNR levels (>1000) can easily be reached for wavelengths higher than 300nm both in solar occultation and nadir modes when considering binning. Below 300nm SNR are lower primarily because of the lower signal and the impact of atmospheric absorption.
Optics Express | 2013
Ann Carine Vandaele; Arnaud Mahieux; Séverine Robert; Sophie Berkenbosch; Roland Clairquin; Rachel Drummond; Vincent Letocart; Eddy Neefs; Bojan Ristic; Valérie Wilquet; Frédéric Colomer; Denis Belyaev
The SOIR instrument on board the ESA Venus Express mission has been operational since the insertion of the satellite around Venus in April 2006. Since then, it has delivered high quality IR solar occultation spectra of the atmosphere of Venus. The different steps from raw spectra to archived data are described and explained in detail here. These consist of corrections for the dark current and for the non-linearity of the detector; removing bad pixels, as well as deriving noise. The spectral calibration procedure is described, along with all ancillary data necessary for the understanding and interpretation of the SOIR data. These include the full characterization of the AOTF filter, one of the major elements of the instrument. All these data can be found in the ESA PSA archive.
Optics Express | 2016
Ian R. Thomas; Ann Carine Vandaele; Séverine Robert; Eddy Neefs; Rachel Drummond; Frank Daerden; Sofie Delanoye; Bojan Ristic; Sophie Berkenbosch; Roland Clairquin; Jeroen Maes; Sabrina Bonnewijn; C. Depiesse; Arnaud Mahieux; L. Trompet; L. Neary; Yannick Willame; Valérie Wilquet; D. Nevejans; Ludovic Aballea; Wouter Moelans; L. De Vos; Stefan Lesschaeve; N. Van Vooren; J. J. Lopez-Moreno; Manish R. Patel; G. Bellucci
NOMAD is a suite of three spectrometers that will be launched in 2016 as part of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument contains three channels that cover the IR and UV spectral ranges and can perform solar occultation, nadir and limb observations, to detect and map a wide variety of Martian atmospheric gases and trace species. Part I of this work described the models of the UVIS channel; in this second part, we present the optical models representing the two IR channels, SO (Solar Occultation) and LNO (Limb, Nadir and Occultation), and use them to determine signal to noise ratios (SNRs) for many expected observational cases. In solar occultation mode, both the SO and LNO channel exhibit very high SNRs >5000. SNRs of around 100 were found for the LNO channel in nadir mode, depending on the atmospheric conditions, Martian surface properties, and observation geometry.
Applied Optics | 2017
Manish R. Patel; Philippe Antoine; Jonathon P. Mason; M. R. Leese; B. Hathi; Adam Stevens; Daniel Dawson; Jason Gow; T. J. Ringrose; J. A. Holmes; Stephen R. Lewis; Didier Beghuin; Philip van Donink; Renaud Ligot; Jean-Luc Dewandel; Daohua Hu; Doug Bates; R. Cole; Rachel Drummond; Ian R. Thomas; C. Depiesse; Eddy Neefs; Eddy Equeter; Bojan Ristic; Sophie Berkenbosch; D. Bolsée; Yannick Willame; Ann Carine Vandaele; Stefan Lesschaeve; Lieve De Vos
NOMAD is a spectrometer suite on board the ESA/Roscosmos ExoMars Trace Gas Orbiter, which launched in March 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel, allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at the day- and night-side, and during solar occultations. Here, in part 2 of a linked study, we describe the design, manufacturing, and testing of the ultraviolet and visible spectrometer channel called UVIS. We focus upon the optical design and working principle where two telescopes are coupled to a single grating spectrometer using a selector mechanism.
Proceedings of SPIE | 2016
M. C. Pastor-Morales; J. Rodriguez-Gomez; Rafael Morales-Muñoz; Juan Manuel Gómez-López; Beatriz Aparicio-del-Moral; Gian Paolo Candini; Jose M. Jerónimo-Zafra; José Juan López-Moreno; Nicolás F. Robles-Muñoz; Rosario Sanz-Mesa; Eddy Neefs; Ann Carine Vandaele; Rachel Drummond; Ian R. Thomas; Sophie Berkenbosch; Roland Clairquin; Sofie Delanoye; Bojan Ristic; Jeroen Maes; Sabrina Bonnewijn; Manish R. Patel; M. R. Leese; Jon Mason
The Spacecraft INterface and control Board for NomAD (SINBAD) is an electronic interface designed by the Instituto de Astroffisica de Andalucfia (IAA-CSIC). It is part of the Nadir and Occultation for MArs Discovery instrument (NOMAD) on board in the ESAs ExoMars Trace Gas Orbiter mission. This mission was launched in March 2016. The SINBAD Flight Software (SFS) is the software embedded in SINBAD. It is in charge of managing the interfaces, devices, data, observing sequences, patching and contingencies of NOMAD. It is presented in this paper the most remarkable aspects of the SFS design, likewise the main problems and lessons learned during the software development process.