Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel Drysdale is active.

Publication


Featured researches published by Rachel Drysdale.


Nucleic Acids Research | 2004

FlyBase: genes and gene models.

Rachel Drysdale; Madeline A. Crosby

FlyBase (http://flybase.org) is the primary repository of genetic and molecular data of the insect family Drosophilidae. For the most extensively studied species, Drosophila melanogaster, a wide range of data are presented in integrated formats. Data types include mutant phenotypes, molecular characterization of mutant alleles and aberrations, cytological maps, wild-type expression patterns, anatomical images, transgenic constructs and insertions, sequence-level gene models and molecular classification of gene product functions. There is a growing body of data for other Drosophila species; this is expected to increase dramatically over the next year, with the completion of draft-quality genomic sequences of an additional 11 Drosphila species.


Science | 1991

A DISTINCT POTASSIUM CHANNEL POLYPEPTIDE ENCODED BY THE DROSOPHILA EAG LOCUS

Jeffrey W. Warmke; Rachel Drysdale; Barry Ganetzky

Many of the signaling properties of neurons and other electrically excitable cells are determined by a diverse family of potassium channels. A number of genes that encode potassium channel polypeptides have been cloned from various organisms on the basis of their sequence similarity to the Drosophila Shaker (Sh) locus. As an alternative strategy, a molecular analysis of other Drosophila genes that were defined by mutations that perturb potassium channel function was undertaken. Sequence analysis of complementary DNA from the ether a go-go (eag) locus revealed that it encodes a structural component of potassium channels that is related to but is distinct from all identified potassium channel polypeptides.


Genome Biology | 2002

Annotation of the Drosophila melanogaster euchromatic genome: a systematic review

Sima Misra; Madeline A. Crosby; Christopher J. Mungall; Beverley B. Matthews; Kathryn S. Campbell; Pavel Hradecky; Yanmei Huang; Joshua S Kaminker; Gillian Millburn; Simon E Prochnik; Christopher D. Smith; Jonathan L Tupy; Eleanor J Whitfield; Leyla Bayraktaroglu; Benjamin P. Berman; Brian Bettencourt; Susan E. Celniker; Aubrey D.N.J. de Grey; Rachel Drysdale; Nomi L. Harris; John Richter; Susan Russo; Andrew J. Schroeder; ShengQiang Shu; Mark Stapleton; Chihiro Yamada; Michael Ashburner; William M. Gelbart; Gerald M. Rubin; Suzanna E. Lewis

BackgroundThe recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.ResultsAlthough the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.ConclusionsIdentification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.


BMC Bioinformatics | 2008

Natural Language Processing in aid of FlyBase curators

Nikiforos Karamanis; Ruth Seal; Ian Lewin; Peter McQuilton; Andreas Vlachos; Caroline Gasperin; Rachel Drysdale; Ted Briscoe

BackgroundDespite increasing interest in applying Natural Language Processing (NLP) to biomedical text, whether this technology can facilitate tasks such as database curation remains unclear.ResultsPaperBrowser is the first NLP-powered interface that was developed under a user-centered approach to improve the way in which FlyBase curators navigate an article. In this paper, we first discuss how observing curators at work informed the design and evaluation of PaperBrowser. Then, we present how we appraise PaperBrowsers navigational functionalities in a user-based study using a text highlighting task and evaluation criteria of Human-Computer Interaction. Our results show that PaperBrowser reduces the amount of interactions between two highlighting events and therefore improves navigational efficiency by about 58% compared to the navigational mechanism that was previously available to the curators. Moreover, PaperBrowser is shown to provide curators with enhanced navigational utility by over 74% irrespective of the different ways in which they highlight text in the article.ConclusionWe show that state-of-the-art performance in certain NLP tasks such as Named Entity Recognition and Anaphora Resolution can be combined with the navigational functionalities of PaperBrowser to support curation quite successfully.


Development Genes and Evolution | 1993

Genes required for embryonic muscle development in Drosophila melanogaster A survey of the X chromosome

Rachel Drysdale; Emma Rushton; Michael Bate

We have begun a genetic analysis to dissect the process of myogenesis by surveying the X chromosome of Drosophila melanogaster for mutations that affect embryonic muscle development. Using polarised light microscopy and antibody staining techniques we analysed embryos hemizygous for a series of 67 deletion mutations that together cover an estimated 85% of the X chromosome, or 16.5% of the genome. Whereas the mature wild type embryo has a regular array of contractile muscles that insert into the epidermis, 31 of the deletion mutants have defects in muscle pattern, contractility or both, that cannot be attributed simply to epidermal defects and identify functions required for wild type muscle development. We have defined mutant pattern phenotypes that can be described in terms of muscle absences, incomplete myoblast fusion, failure of attachment of the muscle to the epidermis or mispositioning of attachment sites. Thus muscle development can be mutationally disrupted in characteristic and interpretable ways. The areas of overlap of the 31 deletions define 19 regions of the X chromosome that include genes whose products are essential for various aspects of myogenesis. We conclude that our screen can usefully identify loci coding for gene products essential in muscle development.


Genome Biology | 2002

Annotation of the Drosophila melanogastereuchromatic genome: a systematic review

Sima Misra; Madeline A. Crosby; Chris Mungall; Beverley B. Matthews; Kathryn S. Campbell; Pavel Hradecky; Yanmei Huang; Joshua S Kaminker; Gillian Millburn; Simon E Prochnik; Christopher D. Smith; Jonathan L Tupy; Eleanor J Whitfield; Leyla Bayraktaroglu; Benjamin P. Berman; Brian Bettencourt; Susan E. Celniker; Aubrey D.N.J. de Grey; Rachel Drysdale; Nomi L Harris; John Richter; Susan Russo; Andrew J. Schroeder; ShengQiang Shu; Mark Stapleton; Chihiro Yamada; Michael Ashburner; William M. Gelbart; Gerald M. Rubin; Suzanna E. Lewis

BackgroundThe recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.ResultsAlthough the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.ConclusionsIdentification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.


Genome Biology | 2002

Annotation of the Drosophila melanogaster

Sima Misra; Madeline A. Crosby; Christopher J. Mungall; Beverley B. Matthews; Kathryn S. Campbell; Pavel Hradecky; Yanmei Huang; Joshua S Kaminker; Gillian Millburn; Simon E Prochnik; Christopher D. Smith; Jonathan L Tupy; Eleanor J Whitfield; Leyla Bayraktaroglu; Benjamin P. Berman; Brian Bettencourt; Susan E. Celniker; Aubrey D.N.J. de Grey; Rachel Drysdale; Nomi L. Harris; John Richter; Susan Russo; Andrew J. Schroeder; ShengQiang Shu; Mark Stapleton; Chihiro Yamada; Michael Ashburner; William M. Gelbart; Gerald M. Rubin; Suzanna E. Lewis

BackgroundThe recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.ResultsAlthough the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.ConclusionsIdentification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.


Yeast | 2000

Meeting review: the Drosophila genome: so that's what it looks like!

Rachel Drysdale; Leyla Bayraktaroglu

41st Annual Drosophila Research Conference, Lawrence Convention Center, Pittsburgh, USA. 22–26 March, 2000. Program Chairs: Pamela K. Geyer and Lori L. Wallrath. Sponsors: The Genetics Society of America.


Comparative and Functional Genomics | 2000

The Drosophila Genome: So That's What it Looks Like!

Rachel Drysdale; Leyla Bayraktaroglu

41st Annual Drosophila Research Conference, Lawrence Convention Center, Pittsburgh, USA. 22–26 March, 2000. Program Chairs: Pamela K. Geyer and Lori L. Wallrath. Sponsors: The Genetics Society of America.


Development | 1995

MUTATIONS IN A NOVEL GENE, MYOBLAST CITY, PROVIDE EVIDENCE IN SUPPORT OF THE FOUNDER CELL HYPOTHESIS FOR DROSOPHILA MUSCLE DEVELOPMENT

Emma Rushton; Rachel Drysdale; Susan M. Abmayr; Alan M. Michelson; Michael Bate

Collaboration


Dive into the Rachel Drysdale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleanor J Whitfield

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge