Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel I. Adams is active.

Publication


Featured researches published by Rachel I. Adams.


The ISME Journal | 2013

Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances

Rachel I. Adams; Marzia Miletto; John W. Taylor; Thomas D. Bruns

The indoor microbiome is a complex system that is thought to depend on dispersal from the outdoor biome and the occupants’ microbiome combined with selective pressures imposed by the occupants’ behaviors and the building itself. We set out to determine the pattern of fungal diversity and composition in indoor air on a local scale and to identify processes behind that pattern. We surveyed airborne fungal assemblages within 1-month time periods at two seasons, with high replication, indoors and outdoors, within and across standardized residences at a university housing facility. Fungal assemblages indoors were diverse and strongly determined by dispersal from outdoors, and no fungal taxa were found as indicators of indoor air. There was a seasonal effect on the fungi found in both indoor and outdoor air, and quantitatively more fungal biomass was detected outdoors than indoors. A strong signal of isolation by distance existed in both outdoor and indoor airborne fungal assemblages, despite the small geographic scale in which this study was undertaken (<500 m). Moreover, room and occupant behavior had no detectable effect on the fungi found in indoor air. These results show that at the local level, outdoor air fungi dominate the patterning of indoor air. More broadly, they provide additional support for the growing evidence that dispersal limitation, even on small geographic scales, is a key process in structuring the often-observed distance–decay biogeographic pattern in microbial communities.


Molecular Ecology | 2009

The ectomycorrhizal fungus Amanita phalloides was introduced and is expanding its range on the west coast of North America

Anne Pringle; Rachel I. Adams; Hugh B. Cross; Thomas D. Bruns

The deadly poisonous Amanita phalloides is common along the west coast of North America. Death cap mushrooms are especially abundant in habitats around the San Francisco Bay, California, but the species grows as far south as Los Angeles County and north to Vancouver Island, Canada. At different times, various authors have considered the species as either native or introduced, and the question of whether A. phalloides is an invasive species remains unanswered. We developed four novel loci and used these in combination with the EF1α and IGS loci to explore the phylogeography of the species. The data provide strong evidence for a European origin of North American populations. Genetic diversity is generally greater in European vs. North American populations, suggestive of a genetic bottleneck; polymorphic sites of at least two loci are only polymorphic within Europe although the number of individuals sampled from Europe was half the number sampled from North America. Endemic alleles are not a feature of North American populations, although alleles unique to different parts of Europe were common and were discovered in Scandinavian, mainland French, and Corsican individuals. Many of these endemic European haplotypes were found together at single sites in California. Early collections of A. phalloides dated prior to 1963 and annotated using sequences of the ITS locus proved to be different species of Amanita. The first Californian collections that we confirmed as A. phalloides were made from the Del Monte Hotel (now the Naval Postgraduate School) in Monterey, and on the campus of the University of California, Berkeley, in 1938 and in 1945. These historical data are used in combination with data on A. phalloides’ current distribution to estimate a rate of spread for A. phalloides in California. Many species of ectomycorrhizal (EM) fungi have been introduced across and among continents, but with this evidence, the death cap becomes the only known invasive EM fungus in North America.


PLOS ONE | 2013

The diversity and distribution of fungi on residential surfaces.

Rachel I. Adams; Marzia Miletto; John W. Taylor; Thomas D. Bruns

The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. “Weedy” genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents’ foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea). Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear – to varying degrees – to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins of the indoor microbiome quite different from bacteria.


Mbio | 2015

Microbiota of the indoor environment: a meta-analysis

Rachel I. Adams; Ashley Bateman; Holly M. Bik; James F. Meadow

BackgroundAs modern humans, we spend the majority of our time in indoor environments. Consequently, environmental exposure to microorganisms has important implications for human health, and a better understanding of the ecological drivers and processes that impact indoor microbial assemblages will be key for expanding our knowledge of the built environment. In the present investigation, we combined recent studies examining the microbiota of the built environment in order to identify unifying community patterns and the relative importance of indoor environmental factors. Ultimately, the present meta-analysis focused on studies of bacteria and archaea due to the limited number of high-throughput fungal studies from the indoor environment. We combined 16S ribosomal RNA (rRNA) gene datasets from 16 surveys of indoor environments conducted worldwide, additionally including 7 other studies representing putative environmental sources of microbial taxa (outdoor air, soil, and the human body).ResultsCombined analysis of subsets of studies that shared specific experimental protocols or indoor habitats revealed community patterns indicative of consistent source environments and environmental filtering. Additionally, we were able to identify several consistent sources for indoor microorganisms, particularly outdoor air and skin, mirroring what has been shown in individual studies. Technical variation across studies had a strong effect on comparisons of microbial community assemblages, with differences in experimental protocols limiting our ability to extensively explore the importance of, for example, sampling locality, building function and use, or environmental substrate in structuring indoor microbial communities.ConclusionsWe present a snapshot of an important scientific field in its early stages, where studies have tended to focus on heavy sampling in a few geographic areas. From the practical perspective, this endeavor reinforces the importance of negative “kit” controls in microbiome studies. From the perspective of understanding mechanistic processes in the built environment, this meta-analysis confirms that broad factors, such as geography and building type, structure indoor microbes. However, this exercise suggests that individual studies with common sampling techniques may be more appropriate to explore the relative importance of subtle indoor environmental factors on the indoor microbiome.


PLOS ONE | 2014

Airborne Bacterial Communities in Residences: Similarities and Differences with Fungi

Rachel I. Adams; Marzia Miletto; Steven E. Lindow; John W. Taylor; Thomas D. Bruns

Genetic analysis of indoor air has uncovered a rich microbial presence, but rarely have both the bacterial and fungal components been examined in the same samples. Here we present a study that examined the bacterial component of passively settled microbes from both indoor and outdoor air over a discrete time period and for which the fungal component has already been reported. Dust was allowed to passively settle in five common locations around a home − living room, bedroom, bathroom, kitchen, and balcony − at different dwellings within a university-housing complex for a one-month period at two time points, once in summer and again in winter. We amplified the bacterial 16S rRNA gene in these samples and analyzed them with high-throughput sequencing. Like fungal OTU-richness, bacterial OTU-richness was higher outdoors then indoors and was invariant across different indoor room types. While fungal composition was structured largely by season and residential unit, bacterial composition varied by residential unit and room type. Bacteria from putative outdoor sources, such as Sphingomonas and Deinococcus, comprised a large percentage of the balcony samples, while human-associated taxa comprised a large percentage of the indoor samples. Abundant outdoor bacterial taxa were also observed indoors, but the reverse was not true; this is unlike fungi, in which the taxa abundant indoors were also well-represented outdoors. Moreover, there was a partial association of bacterial composition and geographic distance, such that samples separated by even a few hundred meters tended have greater compositional differences than samples closer together in space, a pattern also observed for fungi. These data show that while the outdoor source for indoor bacteria and fungi varies in both space and time, humans provide a strong and homogenizing effect on indoor bacterial bioaerosols, a pattern not observed in fungi.


PLOS ONE | 2015

Chamber Bioaerosol Study: Outdoor Air and Human Occupants as Sources of Indoor Airborne Microbes

Rachel I. Adams; Seema Bhangar; Wilmer Pasut; Edward Arens; John W. Taylor; Steven E. Lindow; William W. Nazaroff; Thomas D. Bruns

Human occupants are an important source of microbes in indoor environments. In this study, we used DNA sequencing of filter samples to assess the fungal and bacterial composition of air in an environmental chamber under different levels of occupancy, activity, and exposed or covered carpeting. In this office-like, mechanically ventilated environment, results showed a strong influence of outdoor-derived particles, with the indoor microbial composition tracking that of outdoor air for the 2-hour sampling periods. The number of occupants and their activity played a significant but smaller role influencing the composition of indoor bioaerosols. Human-associated taxa were observed but were not particularly abundant, except in the case of one fungus that appeared to be transported into the chamber on the clothing of a study participant. Overall, this study revealed a smaller signature of human body-associated taxa than had been expected based on recent studies of indoor microbiomes, suggesting that occupants may not exert a strong influence on bioaerosol microbial composition in a space that, like many offices, is well ventilated with air that is moderately filtered and moderately occupied.


Mycologia | 2006

New findings of Neurospora in Europe and comparisons of diversity in temperate climates on continental scales.

David J. Jacobson; Jeremy R. Dettman; Rachel I. Adams; Cornelia Boesl; Shahana Sultana; Till Roenneberg; Martha Merrow; Margarida Duarte; Isabel Marques; Alexandra V. Ushakova; Patrícia Carneiro; Arnaldo Videira; Laura Navarro-Sampedro; María Olmedo; Luis M. Corrochano; John W. Taylor

The life cycles of the conidiating species of Neurospora are adapted to respond to fire, which is reflected in their natural history. Neurospora is found commonly on burned vegetation from the tropic and subtropical regions around the world and through the temperate regions of western North America. In temperate Europe it was unknown whether Neurospora would be as common as it is in North America because it has been reported only occasionally. In 2003 and 2004 a multinational effort surveyed wildfire sites in southern Europe. Neurospora was found commonly from southern Portugal and Spain (37 degrees N) to Switzerland (46 degrees N). Species collected included N. crassa, N. discreta, N. sitophila and N. tetrasperma. The species distribution and spatial dynamics of Neurospora populations showed both similarities and differences when compared between temperate Europe and western North America, both regions of similar latitude, climate and vegetation. For example the predominant species in western North America, N. discreta phylogenetic species 4B, is common but not predominant in Europe, whereas species rare in western North America, N. crassa NcB and N. sitophila, are much more common in Europe. The meiotic drive element Spore killer was also common in European populations of N. sitophila and at a higher proportion than anywhere else in the world. The methods by which organisms spread and adapt to new environments are fundamental ecosystem properties, yet they are little understood. The differences in regional diversity, reported here, can form the basis of testable hypotheses. Questions of phylogeography and adaptations can be addressed specifically by studying Neurospora in nature.


Applied and Environmental Microbiology | 2016

Contribution of vegetation to the microbial composition of nearby outdoor air

Despoina S. Lymperopoulou; Rachel I. Adams; Steven E. Lindow

ABSTRACT Given that epiphytic microbes are often found in large population sizes on plants, we tested the hypothesis that plants are quantitatively important local sources of airborne microorganisms. The abundance of microbial communities, determined by quantifying bacterial 16S RNA genes and the fungal internal transcribed spacer (ITS) region, in air collected directly above vegetation was 2- to 10-fold higher than that in air collected simultaneously in an adjacent nonvegetated area 50 m upwind. Nonmetric multidimensional scaling revealed that the composition of airborne bacteria in upwind air samples grouped separately from that of downwind air samples, while communities on plants and downwind air could not be distinguished. In contrast, fungal taxa in air samples were more similar to each other than to the fungal epiphytes. A source-tracking algorithm revealed that up to 50% of airborne bacteria in downwind air samples were presumably of local plant origin. The difference in the proportional abundances of a given operational taxonomic unit (OTU) between downwind and upwind air when regressed against the proportional representation of this OTU on the plant yielded a positive slope for both bacteria and fungi, indicating that those taxa that were most abundant on plants proportionally contributed more to downwind air. Epiphytic fungi were less of a determinant of the microbiological distinctiveness of downwind air and upwind air than epiphytic bacteria. Emigration of epiphytic bacteria and, to a lesser extent, fungi, from plants can thus influence the microbial composition of nearby air, a finding that has important implications for surrounding ecosystems, including the built environment into which outdoor air can penetrate. IMPORTANCE This paper addresses the poorly understood role of bacterial and fungal epiphytes, the inhabitants of the aboveground plant parts, in the composition of airborne microbes in outdoor air. It is widely held that epiphytes contribute to atmospheric microbial assemblages, but much of what we know is limited to qualitative assessments. Elucidating the sources of microbes in outdoor air can inform basic biological processes seen in airborne communities (e.g., dispersal and biogeographical patterns). Furthermore, given the considerable contribution of outdoor air to microbial communities found within indoor environments, the understanding of plants as sources of airborne microbes in outdoor air might contribute to our understanding of indoor air quality. With an experimental design developed to minimize the likelihood of other-than-local plant sources contributing to the composition of airborne microbes, we provide direct evidence that plants are quantitatively important local sources of airborne microorganisms, with implications for the surrounding ecosystems.


Microbial Ecology | 2013

A Unique Signal Distorts the Perception of Species Richness and Composition in High-Throughput Sequencing Surveys of Microbial Communities: a Case Study of Fungi in Indoor Dust

Rachel I. Adams; Anthony S. Amend; John W. Taylor; Thomas D. Bruns

Sequence-based surveys of microorganisms in varied environments have found extremely diverse assemblages. A standard practice in current high-throughput sequence (HTS) approaches in microbial ecology is to sequence the composition of many environmental samples at once by pooling amplicon libraries at a common concentration before processing on one run of a sequencing platform. Biomass of the target taxa, however, is not typically determined prior to HTS, and here, we show that when abundances of the samples differ to a large degree, this standard practice can lead to a perceived bias in community richness and composition. Fungal signal in settled dust of five university teaching laboratory classrooms, one of which was used for a mycology course, was surveyed. The fungal richness and composition in the dust of the nonmycology classrooms were remarkably similar to each other, while the mycology classroom was dominated by abundantly sporulating specimen fungi, particularly puffballs, and appeared to have a lower overall richness based on rarefaction curves and richness estimators. The fungal biomass was three to five times higher in the mycology classroom than the other classrooms, indicating that fungi added to the mycology classroom swamped the background fungi present in indoor air. Thus, the high abundance of a few taxa can skew the perception of richness and composition when samples are sequenced to an even depth. Next, we used in silico manipulations of the observed data to confirm that a unique signature can be identified with HTS approaches when the source is abundant, whether or not the taxon identity is distinct. Lastly, aerobiology of indoor fungi is discussed.


Evolutionary Ecology | 2013

Genetic diversity within vertebrate species is greater at lower latitudes

Rachel I. Adams; Elizabeth A. Hadly

The latitudinal gradient of species diversity is one of the oldest recognized patterns in biology. While the cause of the pattern remains debated, the global signal of greater diversity toward the tropics is widely established. Whether the pattern holds for genetic diversity within species, however, has received much less attention. We examine latitudinal variation of intraspecific genetic diversity by contrasting nucleotide distance within low- and high-latitude animal groups. Using mitochondrial DNA markers across 72 vertebrate species that together span six continents, two oceans, and 129 degrees of latitude, we found significantly greater genetic diversity at low latitudes within mammalian species, and trends consistent with this pattern in reptiles, amphibians, fish, and birds. The signal held even after removing species whose current geographic ranges include areas recently covered by glaciers during the late Pleistocene and which presumably have experienced colonization bottlenecks in high latitudes. Higher genetic diversity within species was found at low latitudes also for genera that do not possess higher species richness toward the tropics. Moreover, examination of a subset of species with sufficient sampling across a broad geographic range revealed that genetic variation demonstrates a typical gradient, with mid-latitude populations intermediate in genetic diversity between high and low latitude ones. These results broaden the pattern of the global latitudinal diversity gradient, to now include variation within species. These results are also concordant with other studies indicating that low latitude populations and species are on different evolutionary trajectories than high latitude ones, and we speculate that higher rates of evolution toward the equator are driving the pattern for genetic diversity within species.

Collaboration


Dive into the Rachel I. Adams's collaboration.

Top Co-Authors

Avatar

John W. Taylor

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Täubel

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Anne M. Karvonen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Juha Pekkanen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Pirkka Kirjavainen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seema Bhangar

University of California

View shared research outputs
Top Co-Authors

Avatar

Marzia Miletto

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge