Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel K. O’Reilly is active.

Publication


Featured researches published by Rachel K. O’Reilly.


Journal of the American Chemical Society | 2011

Additive-Free Clicking for Polymer Functionalization and Coupling by Tetrazine–Norbornene Chemistry

Claire F. Hansell; Pieter Espeel; Milan M. Stamenović; Ian A. Barker; Andrew P. Dove; Filip Du Prez; Rachel K. O’Reilly

Herein we report the use of a tetrazine-norbornene inverse electron demand Diels-Alder conjugation applied to polymer end-functionalization and polymer-polymer coupling. The reaction was found to be applicable to polymer-polymer coupling, as judged by SEC, DOSY NMR, and LCxSEC analyses, giving diblock copolymers by merely mixing the constituent homopolymers together under ambient conditions, using no catalyst, additive, or external stimulus.


Journal of the American Chemical Society | 2013

Conjugation-induced fluorescent labeling of proteins and polymers using dithiomaleimides.

Mathew P. Robin; Paul Wilson; Anne B. Mabire; Jenny K. Kiviaho; Jeffery E. Raymond; David M. Haddleton; Rachel K. O’Reilly

Dithiomaleimides (DTMs) with alkyl substituents are shown to be a novel class of highly emissive fluorophores. Variable solubility and further functionalization can easily be tailored through the choice of N and S substituents. Inclusion of a DTM unit into a ROP/RAFT initiator or insertion into the disulfide bond of salmon calcitonin (sCT) demonstrates the utility for fluorescent labeling of polymers and proteins. Simultaneous PEGylation and fluorescent labeling of sCT is also demonstrated, using the DTM unit as both a linker and a fluorophore. It is anticipated that DTMs will offer an attractive alternative to commonly used bulky, planar fluorophores.


Journal of the American Chemical Society | 2012

Programmable One-Pot Multistep Organic Synthesis Using DNA Junctions

Mireya L. McKee; Phillip J. Milnes; Jonathan Bath; Eugen Stulz; Rachel K. O’Reilly; Andrew J. Turberfield

A system for multistep DNA-templated synthesis is controlled by the sequential formation of DNA junctions. Reactants are attached to DNA adapters which are brought together by hybridization to DNA template strands. This process can be repeated to allow sequence-controlled oligomer synthesis while maintaining a constant reaction environment, independent of oligomer length, at each reaction step. Synthesis can take place in a single pot containing all required reactive monomers. Different oligomers can be synthesized in parallel in the same vessel, and the products of parallel synthesis can be ligated, reducing the number of reaction steps required to produce an oligomer of a given length.


ACS Nano | 2013

Giant Surfactants Created by the Fast and Efficient Functionalization of a DNA Tetrahedron with a Temperature-Responsive Polymer

Thomas R. Wilks; Jonathan Bath; Jan Willem de Vries; Jeffery E. Raymond; Andreas Herrmann; Andrew J. Turberfield; Rachel K. O’Reilly

Copper catalyzed azide-alkyne cycloaddition (CuAAC) was employed to synthesize DNA block copolymers (DBCs) with a range of polymer blocks including temperature-responsive poly(N-isoproylacrylamide) (poly(NIPAM)) and highly hydrophobic poly(styrene). Exceptionally high yields were achieved at low DNA concentrations, in organic solvents, and in the absence of any solid support. The DNA segment of the DBC remained capable of sequence-specific hybridization: it was used to assemble a precisely defined nanostructure, a DNA tetrahedron, with pendant poly(NIPAM) segments. In the presence of an excess of poly(NIPAM) homopolymer, the tetrahedron-poly(NIPAM) conjugate nucleated the formation of large, well-defined nanoparticles at 40 °C, a temperature at which the homopolymer precipitated from solution. These composite nanoparticles were observed by dynamic light scattering and cryoTEM, and their hybrid nature was confirmed by AFM imaging. As a result of the large effective surface area of the tetrahedron, only very low concentrations of the conjugate were required in order for this surfactant-like behavior to be observed.


Chemical Communications | 2010

Polymeric ligands as homogeneous, reusable catalyst systems for copper assisted click chemistry

Mieke Lammens; Jared Skey; Sofie Wallyn; Rachel K. O’Reilly; Filip Du Prez

Tris-(benzyltriazolylmethyl)amine (TBTA) has been immobilized onto a styrenic monomer and subsequently copolymerized with styrene to afford catalytically active and reusable copolymers for the CuAAC reaction.


Bioconjugate Chemistry | 2015

Self-Assembly of Temperature-Responsive Protein−Polymer Bioconjugates

Dafni Moatsou; Jian Li; Arnaz Ranji; Anaïs Pitto-Barry; Ioanna Ntai; Michael C. Jewett; Rachel K. O’Reilly

We report a simple temperature-responsive bioconjugate system comprising superfolder green fluorescent protein (sfGFP) decorated with poly[(oligo ethylene glycol) methyl ether methacrylate] (PEGMA) polymers. We used amber suppression to site-specifically incorporate the non-canonical azide-functional amino acid p-azidophenylalanine (pAzF) into sfGFP at different positions. The azide moiety on modified sfGFP was then coupled using copper-catalyzed “click” chemistry with the alkyne terminus of a PEGMA synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. The protein in the resulting bioconjugate was found to remain functionally active (i.e., fluorescent) after conjugation. Turbidity measurements revealed that the point of attachment of the polymer onto the protein scaffold has an impact on the thermoresponsive behavior of the resultant bioconjugate. Furthermore, small-angle X-ray scattering analysis showed the wrapping of the polymer around the protein in a temperature-dependent fashion. Our work demonstrates that standard genetic manipulation combined with an expanded genetic code provides an easy way to construct functional hybrid biomaterials where the location of the conjugation site on the protein plays an important role in determining material properties. We anticipate that our approach could be generalized for the synthesis of complex functional materials with precisely defined domain orientation, connectivity, and composition.


Journal of the American Chemical Society | 2013

New functional handle for use as a self-reporting contrast and delivery agent in nanomedicine.

Mathew P. Robin; Anne B. Mabire; Joanne C. Damborsky; Elizabeth S. Thom; Ursula H. Winzer-Serhan; Jeffery E. Raymond; Rachel K. O’Reilly

The synthesis and photophysical characterization of a chromophore-bridged block copolymer system is presented. This system is based on a dithiomaleimide (DTM) functional group as a highly emissive functionality which can readily be incorporated into polymeric scaffolds. A key advantage of this new reporter group is its versatile chemistry, ease of further functionalization, and notably small size, which allows for ready incorporation without affecting or disrupting the self-assembly process critical to the formation of core-shell polymeric contrast and drug delivery agents. We demonstrate the potential of this functionality with a diblock system which has been shown to be appropriate for micellization and, when in the micellar state, does not self-quench. The block copolymer is shown to be significantly more emissive than the lone dye, with a concentration-independent emission and anisotropy profile from 1.5 mM to 0.15 μM. An emission lifetime and anisotropy decay comparison of the block copolymer to its micelle displays that time-domain fluorescence lifetime imaging (FLIM) is able to rapidly resolve differences in the supramolecular state of this block-dye-block polymer system. Furthermore, the ability to resolve these differences in the supramolecular state means that the DTM micelles are capable of self-reporting when disassembly occurs, simply by monitoring with FLIM. We demonstrate the great potential for in vitro applications that this system provides by using FLIM to observe micelle disassembly in different vascular components of rat hippocampal tissue. In total this system represents a new class of in-chain emitter which is appropriate for application in quantitative imaging and the tracking of particle degradation/disassembly events in biological environments.


Macromolecules | 2016

Cyclic graft copolymer unimolecular micelles : effects of cyclization on particle morphology and thermoresponsive behavior

Anaïs Pitto-Barry; Nigel Kirby; Andrew P. Dove; Rachel K. O’Reilly

The synthesis of cyclic amphiphilic graft copolymers with a hydrophobic polycarbonate backbone and hydrophilic poly(N-acryloylmorpholine) (PNAM) side arms via a combination of ring-opening polymerization (ROP), cyclization via copper-catalyzed azide–alkyne cycloaddition (CuAAC), and reversible addition–fragmentation chain transfer (RAFT) polymerization is reported. The ability of these cyclic graft copolymers to form unimolecular micelles in water is explored using a combination of light scattering, small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryoTEM) analyses, where particle size was found to increase with increasing PNAM arm length. Further analysis revealed differences in the solution conformations, loading capabilities, and morphologies of the cyclic graft copolymers in comparison to equivalent linear graft copolymer unimolecular micelle analogues. Furthermore, the cyclic and linear graft copolymers were found to exhibit significantly different cloud point temperatures. This study highlights how subtle changes in polymer architecture (linear graft copolymer versus cyclic graft copolymer) can dramatically influence a polymer’s nanostructure and its properties.


ACS Nano | 2013

Hollow block copolymer nanoparticles through a spontaneous one-step structural reorganization.

Nikos Petzetakis; Mathew P. Robin; Joseph P. Patterson; Elizabeth G. Kelley; Pepa Cotanda; Paul H. H. Bomans; Nico A. J. M. Sommerdijk; Andrew P. Dove; Thomas H. Epps; Rachel K. O’Reilly

The spontaneous one-step synthesis of hollow nanocages and nanotubes from spherical and cylindrical micelles based on poly(acrylic acid)-b-polylactide (P(AA)-b-P(LA)) block copolymers (BCPs) has been achieved. This structural reorganization, which occurs simply upon drying of the samples, was elucidated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). We show that it was necessary to use stain-free imaging to examine these nanoscale assemblies, as the hollow nature of the particles was obscured by application of a heavy metal stain. Additionally, the internal topology of the P(AA)-b-P(LA) particles could be tuned by manipulating the drying conditions to give solid or compartmentalized structures. Upon resuspension, these reorganized nanoparticles retain their hollow structure and display significantly enhanced loading of a hydrophobic dye compared to the original solid cylinders.


Biomacromolecules | 2015

Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification.

Guillaume Hedir; Craig A. Bell; Rachel K. O’Reilly; Andrew P. Dove

The synthesis of vinyl bromobutanoate (VBr), a new vinyl acetate monomer derivative obtained by the palladium-catalyzed vinyl exchange reaction between vinyl acetate (VAc) and 4-bromobutyric acid is reported. The homopolymerization of this new monomer using the RAFT/MADIX polymerization technique leads to the formation of novel well-defined and controlled polymers containing pendent bromine functional groups able to be modified via postpolymerization modification. Furthermore, the copolymerization of vinyl bromobutanoate with 2-methylene-1,3-dioxepane (MDO) was also performed to deliver a range of novel functional degradable copolymers, poly(MDO-co-VBr). The copolymer composition was shown to be able to be tuned to vary the amount of ester repeat units in the polymer backbone, and hence determine the degradability, while maintaining a control of the final copolymers’ molar masses. The addition of functionalities via simple postpolymerization modifications such as azidation and the 1,3-dipolar cycloaddition of a PEG alkyne to an azide is also reported and proven by 1H NMR spectroscopy, FTIR spectroscopy, and SEC analyses. These studies enable the formation of a novel class of hydrophilic functional degradable copolymers using versatile radical polymerization methods.

Collaboration


Dive into the Rachel K. O’Reilly's collaboration.

Top Co-Authors

Avatar

Andrew P. Dove

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge