Rachel Kama
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel Kama.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Gad Asher; Joseph Lotem; Rachel Kama; Leo Sachs; Yosef Shaul
Wild-type p53 is a tumor-suppressor gene that encodes a short-lived protein that, upon accumulation, induces growth arrest or apoptosis. Accumulation of p53 occurs mainly by posttranslational events that inhibit its proteosomal degradation. We have reported previously that inhibition of NAD(P)H: quinone oxidoreductase 1 (NQO1) activity by dicoumarol induces degradation of p53, indicating that NQO1 plays a role in p53 stabilization. We now have found that wild-type NQO1, but not the inactive polymorphic NQO1, can stabilize endogenous as well as transfected wild-type p53. NQO1-mediated p53 stabilization was especially prominent under induction of oxidative stress. NQO1 also partially inhibited p53 degradation mediated by the human papilloma virus E6 protein, but not when mediated by Mdm-2. Inhibitors of heat shock protein 90 (hsp90), radicicol and geldanamycin, induced degradation of p53 and suppressed p53-induced apoptosis in normal thymocytes and myeloid leukemic cells. Differences in the effectiveness of dicoumarol and hsp90 inhibitors to induce p53 degradation and suppress apoptosis in these cell types indicate that NQO1 and hsp90 stabilize p53 through different mechanisms. Our results indicate that NQO1 has a distinct role in the regulation of p53 stability, especially in response to oxidative stress. The present data on the genetic and pharmacologic regulation of the level of p53 have clinical implications for tumor development and therapy.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Xi-Ming Yuan; Wei Li; Helge Dalen; Joseph Lotem; Rachel Kama; Leo Sachs; Ulf T. Brunk
The tumor suppressor wild-type p53 can induce apoptosis. M1-t-p53 myeloid leukemic cells have a temperature-sensitive p53 protein that changes its conformation to wild-type p53 after transfer from 37°C to 32°C. We have now found that these cells showed an early lysosomal rupture after transfer to 32°C. Mitochondrial damage, including decreased membrane potential and release of cytochrome c, and the appearance of apoptotic cells occurred later. Lysosomal rupture, mitochondrial damage, and apoptosis were all inhibited by the cytokine IL-6. Some other compounds can also inhibit apoptosis induced by p53. The protease inhibitor N-tosyl-l-phenylalanine chloromethyl ketone inhibited the decrease in mitochondrial membrane potential and cytochrome c release, the Ca2+-ATPase inhibitor thapsigargin inhibited only cytochrome c release, and the antioxidant butylated hydroxyanisole inhibited only the decrease in mitochondrial membrane potential. In contrast to IL-6, these other compounds that inhibited some of the later occurring mitochondrial damage did not inhibit the earlier p53-induced lysosomal damage. The results indicate that apoptosis is induced by p53 through a lysosomal-mitochondrial pathway that is initiated by lysosomal destabilization, and that this pathway can be dissected by using different apoptosis inhibitors. These findings on the induction of p53-induced lysosomal destabilization can also help to formulate new therapies for diseases with apoptotic disorders.
Molecular and Cellular Biology | 2007
Rachel Kama; Micah Robinson; Jeffrey E. Gerst
ABSTRACT BTN2 gene expression in the yeast Saccharomyces cerevisiae is up-regulated in response to the deletion of BTN1, which encodes the ortholog of a human Batten disease protein. We isolated Btn2 as a Snc1 v-SNARE binding protein using the two-hybrid assay and examined its role in intracellular protein trafficking. We show that Btn2 is an ortholog of theDrosophila and mammalian Hook1 proteins that interact with SNAREs, cargo proteins, and coat components involved in endosome-Golgi protein sorting. By immunoprecipitation, it was found that Btn2 bound the yeast endocytic SNARE complex (e.g., Snc1 and Snc2 [Snc1/2], Tlg1, Tlg2, and Vti1), the Snx4 sorting nexin, and retromer (e.g., Vps26 and Vps35). In in vitro binding assays, recombinant His6-tagged Btn2 bound glutathione S-transferase (GST)-Snc1 and GST-Vps26. Btn2-green fluorescent protein and Btn2-red fluorescent protein colocalize with Tlg2, Snx4, and Vps27 to a compartment adjacent to the vacuole that corresponds to a late endosome. The deletion of BTN2 blocks Yif1 retrieval back to the Golgi apparatus, while the localization of Ste2, Fur4, Snc1, Vps10, carboxypeptidases Y (CPY) and S (CPS), Sed5, and Sec7 is unaltered in btn2Δ cells. Yif1 delivery to the vacuole was observed in other late endosome-Golgi trafficking mutants, including ypt6Δ, snx4Δ, and vps26Δ cells. Thus, Btn2 facilitates specific protein retrieval from a late endosome to the Golgi apparatus, a process which may be adversely affected in patients with Batten disease.
Molecular and Cellular Biology | 2007
Galina Gabriely; Rachel Kama; Jeffrey E. Gerst
ABSTRACT Although COPI function on the early secretory pathway in eukaryotes is well established, earlier studies also proposed a nonconventional role for this coat complex in endocytosis in mammalian cells. Here we present results that suggest an involvement for specific COPI subunits in the late steps of endosomal protein sorting in Saccharomyces cerevisiae. First, we found that carboxypeptidase Y (CPY) was partially missorted to the cell surface in certain mutants of the COPIB subcomplex (COPIb; Sec27, Sec28, and possibly Sec33), which indicates an impairment in endosomal transport. Second, integral membrane proteins destined for the vacuolar lumen (i.e., carboxypeptidase S [CPS1]; Fur4, Ste2, and Ste3) accumulated at an aberrant late endosomal compartment in these mutants. The observed phenotypes for COPIb mutants resemble those of class E vacuolar protein sorting (vps) mutants that are impaired in multivesicular body (MVB) protein sorting and biogenesis. Third, we observed physical interactions and colocalization between COPIb subunits and an MVB-associated protein, Vps27. Together, our findings suggest that certain COPI subunits could have a direct role in vacuolar protein sorting to the MVB compartment.
Journal of Cell Biology | 2011
Rachel Kama; Vydehi Kanneganti; Christian Ungermann; Jeffrey E. Gerst
Btn1 controls endosome–Golgi retrograde sorting by regulating SNARE phosphorylation and assembly.
Molecular Biology of the Cell | 2008
Galina Gabriely; Rachel Kama; Rita Gelin-Licht; Jeffrey E. Gerst
Ddi1/Vsm1 is an ubiquitin receptor involved in regulation of the cell cycle and late secretory pathway in Saccharomyces cerevisiae. Ddi1 possesses three domains: an NH(2)-terminal ubiquitin-like domain (UBL), a COOH-terminal ubiquitin-associated domain (UBA), and a retroviral aspartyl-protease domain (RVP). Here, we demonstrate the domains involved in homodimerization, checkpoint regulation, localization, and t-SNARE binding. The RVP domain is required for protein homodimerization, whereas the UBL and UBA domains are required for rescue of the pds1-128 checkpoint mutant and enrichment of GFP-Ddi1 in the nucleus. A mutation in aspartate-220, which is necessary for putative aspartyl-protease function, abolished the rescue of pds1-128 cells but not homodimerization. Thus, Ddi1 catalytic activity may be required for checkpoint regulation. The Sso1 t-SNARE-interacting domain maps to residues 344-395 and undergoes phosphorylation on threonines T346 and T348. T348 is necessary for Sso binding, and phosphorylation is important for function, because mutations that lessen phosphorylation (e.g., Ddi1(T346A), Ddi1(T348A)) are unable to facilitate growth of the sec9-4 t-SNARE mutant. In contrast, the overproduction of phosphorylatable forms of Ddi1 (e.g., Ddi1, Ddi1(S341A)) rescue the growth of sec9-4 cells similar to Sso1 overproduction. Thus, Ddi1 participates in multiple cellular processes via its different domains and phosphorylation may regulate exocytic functions.
Molecular Biology of the Cell | 2011
Vydehi Kanneganti; Rachel Kama; Jeffrey E. Gerst
Btn2 is a Batten disease-related protein that mediates endosome-Golgi protein retrieval and prion curing in yeast. Here we characterize Btn3, a putative orthologue of a human complex I deficiency protein, as a Btn2-interacting protein and negative regulator. Thus endosomal proteins involved in disease onset may engage prion-clearing compartments.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Joseph Lotem; Hilah Gal; Rachel Kama; Ninette Amariglio; Gideon Rechavi; Eytan Domany; Leo Sachs; David Givol
Using DNA microarray and clustering of expressed genes we have analyzed the mechanism of inhibition of wild-type p53-induced apoptosis by the cytokine interleukin 6 (IL-6) and the calcium mobilizer thapsigargin (TG). Clustering analysis of 1,786 genes, the expression level of which changed after activation of wild-type p53 in the absence or presence of IL-6 or TG, showed that these compounds did not cause a general inhibition of the ability of p53 to up-regulate or down-regulate gene expression. Expression of various p53 targets implicated as mediators of p53-induced apoptosis was also not affected by IL-6 or TG. These compounds thus can bypass the effect of wild-type p53 on gene expression and inhibit apoptosis. IL-6 and TG activated different p53-independent pathways of gene expression that include up-regulation of antiapoptotic genes. IL-6 and TG also activated different differentiation-associated genes. The ability of compounds such as cytokines and calcium mobilizers to inhibit p53-mediated apoptosis without generally inhibiting gene expression regulated by p53 can facilitate tumor development and tumor resistance to radiation and chemotherapy in cells that retain wild-type p53.
Cell Reports | 2015
Niv Dobzinski; Silvia G. Chuartzman; Rachel Kama; Maya Schuldiner; Jeffrey E. Gerst
Upon amino acid (AA) starvation and TOR inactivation, plasma-membrane-localized permeases rapidly undergo ubiquitination and internalization via the vacuolar protein sorting/multivesicular body (VPS-MVB) pathway and are degraded in the yeast vacuole. We now show that specific Golgi proteins are also directed to the vacuole under these conditions as part of a Golgi quality-control (GQC) process. The degradation of GQC substrates is dependent upon ubiquitination by the defective-for-SREBP-cleavage (DSC) complex, which was identified via genetic screening and includes the Tul1 E3 ligase. Using a model GQC substrate, GFP-tagged Yif1, we show that vacuolar targeting necessitates upregulation of the VPS pathway via proteasome-mediated degradation of the initial endosomal sorting complex required for transport, ESCRT-0, but not downstream ESCRT components. Thus, early cellular responses to starvation include the targeting of specific Golgi proteins for degradation, a phenomenon reminiscent of the inactivation of BTN1, the yeast Batten disease gene ortholog.
Proceedings of the National Academy of Sciences of the United States of America | 1999
Joseph Lotem; Rachel Kama; Leo Sachs