Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel L. Erlich is active.

Publication


Featured researches published by Rachel L. Erlich.


Nature | 2012

MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS

Trevor J. Pugh; Shyamal Dilhan Weeraratne; Tenley C. Archer; Daniel Pomeranz Krummel; Daniel Auclair; James Bochicchio; Mauricio O. Carneiro; Scott L. Carter; Kristian Cibulskis; Rachel L. Erlich; Heidi Greulich; Michael S. Lawrence; Niall J. Lennon; Aaron McKenna; James C. Meldrim; Alex H. Ramos; Michael G. Ross; Carsten Russ; Erica Shefler; Andrey Sivachenko; Brian Sogoloff; Petar Stojanov; Pablo Tamayo; Jill P. Mesirov; Vladimir Amani; Natalia Teider; Soma Sengupta; Jessica Pierre Francois; Paul A. Northcott; Michael D. Taylor

Medulloblastomas are the most common malignant brain tumours in children. Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma on the basis of transcriptional and copy number profiles. Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, β-catenin. Together, our study reveals the alteration of WNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic β-catenin signalling in medulloblastoma.


PLOS Pathogens | 2012

Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection

Matthew R. Henn; Christian L. Boutwell; Patrick Charlebois; Niall J. Lennon; Karen A. Power; Alexander R. Macalalad; Aaron M. Berlin; Christine M. Malboeuf; Elizabeth Ryan; Sante Gnerre; Michael C. Zody; Rachel L. Erlich; Lisa Green; Andrew Berical; Yaoyu Wang; Monica Casali; Hendrik Streeck; Allyson K. Bloom; Tim Dudek; Damien C. Tully; Ruchi M. Newman; Karen L. Axten; Adrianne D. Gladden; Laura Battis; Michael Kemper; Qiandong Zeng; Terrance Shea; Sharvari Gujja; Carmen Zedlack; Olivier Gasser

Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.


PLOS ONE | 2012

Evaluation of 16s rDNA-based community profiling for human microbiome research

Doyle V. Ward; Dirk Gevers; Georgia Giannoukos; Ashlee M. Earl; Barbara A. Methé; Erica Sodergren; Michael Feldgarden; Dawn Ciulla; Diana Tabbaa; Cesar Arze; Elizabeth L. Appelbaum; Leigh Aird; Scott Anderson; Tulin Ayvaz; Edward A. Belter; Monika Bihan; Toby Bloom; Jonathan Crabtree; Laura Courtney; Lynn K. Carmichael; David J. Dooling; Rachel L. Erlich; Candace N. Farmer; Lucinda Fulton; Robert S. Fulton; Hongyu Gao; John Gill; Brian J. Haas; Lisa Hemphill; Otis Hall

The Human Microbiome Project will establish a reference data set for analysis of the microbiome of healthy adults by surveying multiple body sites from 300 people and generating data from over 12,000 samples. To characterize these samples, the participating sequencing centers evaluated and adopted 16S rDNA community profiling protocols for ABI 3730 and 454 FLX Titanium sequencing. In the course of establishing protocols, we examined the performance and error characteristics of each technology, and the relationship of sequence error to the utility of 16S rDNA regions for classification- and OTU-based analysis of community structure. The data production protocols used for this work are those used by the participating centers to produce 16S rDNA sequence for the Human Microbiome Project. Thus, these results can be informative for interpreting the large body of clinical 16S rDNA data produced for this project.


Genome Biology | 2010

A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454

Niall J. Lennon; Robert E. Lintner; Scott Anderson; Pablo Alvarez; Andrew Barry; William Bennett Brockman; Riza Daza; Rachel L. Erlich; Georgia Giannoukos; Lisa Green; Andrew Hollinger; Cindi A. Hoover; David B. Jaffe; Frank Juhn; Danielle McCarthy; Danielle Perrin; Karen Ponchner; Taryn L Powers; Kamran Rizzolo; Dana Robbins; Elizabeth Ryan; Carsten Russ; Todd Sparrow; John Stalker; Scott Steelman; Michael Weiand; Andrew Zimmer; Matthew R. Henn; Chad Nusbaum; Robert Nicol

We present an automated, high throughput library construction process for 454 technology. Sample handling errors and cross-contamination are minimized via end-to-end barcoding of plasticware, along with molecular DNA barcoding of constructs. Automation-friendly magnetic bead-based size selection and cleanup steps have been devised, eliminating major bottlenecks and significant sources of error. Using this methodology, one technician can create 96 sequence-ready 454 libraries in 2 days, a dramatic improvement over the standard method.


BMC Genomics | 2011

Next-generation sequencing for HLA typing of class I loci

Rachel L. Erlich; Xiaoming Jia; Scott Anderson; Eric Banks; Xiaojiang Gao; Mary Carrington; Namrata Gupta; Mark A. DePristo; Matthew R. Henn; Niall J. Lennon; Paul I. W. de Bakker

BackgroundComprehensive sequence characterization across the MHC is important for successful organ transplantation and genetic association studies. To this end, we have developed an automated sample preparation, molecular barcoding and multiplexing protocol for the amplification and sequence-determination of class I HLA loci. We have coupled this process to a novel HLA calling algorithm to determine the most likely pair of alleles at each locus.ResultsWe have benchmarked our protocol with 270 HapMap individuals from four worldwide populations with 96.4% accuracy at 4-digit resolution. A variation of this initial protocol, more suitable for large sample sizes, in which molecular barcodes are added during PCR rather than library construction, was tested on 95 HapMap individuals with 98.6% accuracy at 4-digit resolution.ConclusionsNext-generation sequencing on the 454 FLX Titanium platform is a reliable, efficient, and scalable technology for HLA typing.


Human Molecular Genetics | 2012

Fine-mapping classical HLA variation associated with durable host control of HIV-1 infection in African Americans

Paul J. McLaren; Stephan Ripke; Kimberly Pelak; Amy C. Weintrob; Nikolaos A. Patsopoulos; Xiaoming Jia; Rachel L. Erlich; Niall J. Lennon; Carl M. Kadie; David Heckerman; Namrata Gupta; David W. Haas; Steven G. Deeks; Florencia Pereyra; Bruce D. Walker; Paul I. W. de Bakker

A small proportion of human immunodeficiency virus-1 (HIV-1) infected individuals, termed HIV-1 controllers, suppress viral replication to very low levels in the absence of therapy. Genetic investigations of this phenotype have strongly implicated variation in the class I major histocompatibility complex (MHC) region as key to HIV-1 control. We collected sequence-based classical class I HLA genotypes at 4-digit resolution in HIV-1-infected African American controllers and progressors (n = 1107), and tested them for association with host control using genome-wide single nucleotide polymorphism data to account for population structure. Several classical alleles at HLA-B were associated with host control, including B*57:03 [odds ratio (OR) = 5.1; P= 3.4 × 10(-18)] and B*81:01 (OR = 4.8; P= 1.3 × 10(-9)). Analysis of variable amino acid positions demonstrates that HLA-B position 97 is the most significant association with host control in African Americans (omnibus P = 1.2 × 10(-21)) and explains the signal of several HLA-B alleles, including B*57:03. Within HLA-B, we also identified independent effects at position 116 (omnibus P= 2.8 × 10(-15)) in the canonical F pocket, position 63 in the B pocket (P= 1.5 × 10(-3)) and the non-pocket position 245 (P= 8.8 × 10(-10)), which is thought to influence CD8-binding kinetics. Adjusting for these HLA-B effects, there is evidence for residual association in the MHC region. These results underscore the key role of HLA-B in affecting HIV-1 replication, likely through the molecular interaction between HLA-B and viral peptides presented by infected cells, and suggest that sites outside the peptide-binding pocket also influence HIV-1 control.


Retrovirology | 2009

P09-20 LB. Ultra-deep sequencing of full-length HIV-1 genomes identifies rapid viral evolution during acute infection.

Henn; Christian L. Boutwell; Niall J. Lennon; Karen A. Power; Christine M. Malboeuf; Patrick Charlebois; A Gladden; Joshua Z. Levin; Monica Casali; L Philips; Aaron M. Berlin; Andrew Berical; Rachel L. Erlich; S Anderson; Hendrik Streeck; M Kemper; Elizabeth Ryan; Y Wang; Lisa Green; K Axten; Zabrina L. Brumme; Chanson J. Brumme; C Russ; Eric S. Rosenberg; Heiko Jessen; Marcus Altfeld; Chad Nusbaum; Bruce D. Walker; Bruce W. Birren; Todd M. Allen

Open Access Poster presentation P09-20 LB. Ultra-deep sequencing of full-length HIV-1 genomes identifies rapid viral evolution during acute infection MR Henn1, C Boutwell3, N Lennon1, K Power3, C Malboeuf1, P Charlebois1, A Gladden3, J Levin1, M Casali1, L Philips3, A Berlin1, A Berical3, R Erlich1, S Anderson1, H Streeck3, M Kemper3, E Ryan1, Y Wang3, L Green1, K Axten3, Z Brumme3, C Brumme3, C Russ1, E Rosenberg3, H Jessen2, M Altfeld3, C Nusbaum1, B Walker3, B Birren1 and TM Allen*3


Genome Biology | 2010

Sensitive population profiling and genome assembly of HIV and Flaviviruses using ultra-deep sequencing technologies

Matthew R. Henn; Niall J. Lennon; Ruchi M. Newman; Patrick Charlebois; Christian L. Boutwell; Molly OhAinle; Aaron M. Berlin; Elizabeth Ryan; Christine M. Malboeuf; Alex Macalalad; Monica Casali; Rachel L. Erlich; Henry Bigelow; Lisa Green; Sante Gnerre; Joshua Z. Levin; Chad Nusbaum; Bruce D. Walker; Michael S. Diamond; Laura D. Kramer; Gregory D. Ebel; Eva Harris; Todd M. Allen; Bruce W. Birren

Viral diseases such as HIV/AIDS and Dengue have an enormous impact on human health worldwide. Despite this, application of new sequencing technologies to viral genomics has lagged. We are using genome sequence data to study how populations of single stranded RNA viruses, including HIV, Dengue, West Nile and Hepatitis C, evolve within infected individuals in response to host immune, therapeutic and vaccine pressures. To support this, we have developed high-throughput sequencing, assembly and population profiling pipelines based on 454 and Illumina technology that are tuned to the specific needs of viral sequencing. These strategies can capture full genome sequences and can profile sequence diversity at each residue in the genome with unprecedented sensitivity. Our analytical pipeline for 454 and Illumina data (i) generates complete genome assemblies from short sequencing reads derived from populations with high rates of variation; and (ii) detects and quantifies variants in these populations with high sensitivity, while differentiating true variants from process errors. Initial results with our viral sequencing and analysis pipeline are extremely promising. We detected rare variants to below 1% frequency, revolutionizing our ability to accurately assess the earliest events in viral evolution. We have demonstrated effective assessment of genome-wide diversity during acute HIV infection, enabling rapid, affordable, and highly sensitive identification of the earliest cellular immune responses to HIV. This has allowed us to detect earlier evolutionary events, demonstrating, for example, that HIV cytotoxic T-lymphocyte (CTL) escape can occur much faster than previously known. In addition, we have shown that the extent of intra-host diversity in Flaviviruses such as DENV and WNV is different between these closely related viruses with the latter exhibiting greater genetic diversity. The results presented here demonstrate the power of scalable, next generation sequencing-based methodologies as a genome-wide and unbiased global approach to profiling genomic diversity in intra-host populations of single stranded RNA viruses.


Archive | 2010

construction of sequence-ready barcoded libraries for 454

Niall J. Lennon; Robert E. Lintner; Scott D. Anderson; Pedro Ivan Alvarez Gutierrez; Andrew Barry; William Brockman; Riza Daza; Rachel L. Erlich; Georgia Giannoukos; Lisa Green; Andrew Hollinger; Cindi A. Hoover; David B. Jaffe; Frank Juhn; Danielle McCarthy; Danielle Perrin; Karen Ponchner; Taryn L Powers; Kamran Rizzolo; Dana Robbins; Elizabeth Ryan; Carsten Russ; Todd Sparrow; John Stalker; Scott Steelman; Michael Weiand; Andrew Zimmer; Matthew R. Henn; Chad Nusbaum; Robert Nicol


Archive | 2010

Methodfully automated process for construction of sequence-ready barcoded libraries for 454

Niall J. Lennon; Robert E. Lintner; Scott Anderson; Pablo Alvarez; Andrew Barry; William Brockman; Riza Daza; Rachel L. Erlich; Georgia Giannoukos; Lisa Green; Andrew Hollinger; Cindi A. Hoover; David B. Jaffe; Frank Juhn; Danielle McCarthy; Danielle Perrin; Karen Ponchner; Taryn L Powers; Kamran Rizzolo; Dana Robbins; Elizabeth Ryan; Carsten Russ; Todd Sparrow; John Stalker; Scott Steelman; Michael Weiand; Andrew Zimmer; Matthew R. Henn; Chad Nusbaum; Robert Nicol

Collaboration


Dive into the Rachel L. Erlich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge