Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel L. Gillespie is active.

Publication


Featured researches published by Rachel L. Gillespie.


Ophthalmology | 2014

Personalized diagnosis and management of congenital cataract by next-generation sequencing.

Rachel L. Gillespie; James O’Sullivan; Jane Ashworth; Sanjeev Bhaskar; Simon G Williams; Susmito Biswas; Elias Kehdi; Simon C. Ramsden; Jill Clayton-Smith; Graeme C.M. Black; I. Christopher Lloyd

PURPOSE To assess the utility of integrating genomic data from next-generation sequencing and phenotypic data to enhance the diagnosis of bilateral congenital cataract (CC). DESIGN Evaluation of diagnostic technology. PARTICIPANTS Thirty-six individuals diagnosed with nonsyndromic or syndromic bilateral congenital cataract were selected for investigation through a single ophthalmic genetics clinic. METHODS Participants underwent a detailed ophthalmic examination, accompanied by dysmorphology assessment where appropriate. Lenticular, ocular, and systemic phenotypes were recorded. Mutations were detected using a custom-designed target enrichment that permitted parallel analysis of 115 genes associated with CC by high-throughput, next-generation DNA sequencing (NGS). Thirty-six patients and a known positive control were tested. Suspected pathogenic variants were confirmed by bidirectional Sanger sequencing in relevant probands and other affected family members. MAIN OUTCOME MEASURES Molecular genetic results and details of clinical phenotypes were identified. RESULTS Next-generation DNA sequencing technologies are able to determine the precise genetic cause of CC in 75% of individuals, and 85% patients with nonsyndromic CC were found to have likely pathogenic mutations, all of which occurred in highly conserved domains known to be vital for normal protein function. The pick-up rate in patients with syndromic CC also was high, with 63% having potential disease-causing mutations. CONCLUSIONS This analysis demonstrates the clinical utility of this test, providing examples where it altered clinical management, directed care pathways, and enabled more accurate genetic counseling. This comprehensive screen will extend access to genetic testing and lead to improved diagnostic and management outcomes through a stratified medicine approach. Establishing more robust genotype-phenotype correlations will advance knowledge of cataract-forming mechanisms.


Journal of Medical Genetics | 2016

Molecular findings from 537 individuals with inherited retinal disease

Jamie M Ellingford; Stephanie Barton; Sanjeev Bhaskar; James O'Sullivan; Simon G Williams; Janine A. Lamb; Binay Panda; Panagiotis I. Sergouniotis; Rachel L. Gillespie; Stephen P. Daiger; Georgina Hall; Theodora Gale; I. Christopher Lloyd; Paul N. Bishop; Simon C. Ramsden; Graeme C.M. Black

Background Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous set of disorders, for which diagnostic second-generation sequencing (next-generation sequencing, NGS) services have been developed worldwide. Methods We present the molecular findings of 537 individuals referred to a 105-gene diagnostic NGS test for IRDs. We assess the diagnostic yield, the spectrum of clinical referrals, the variant analysis burden and the genetic heterogeneity of IRD. We retrospectively analyse disease-causing variants, including an assessment of variant frequency in Exome Aggregation Consortium (ExAC). Results Individuals were referred from 10 clinically distinct classifications of IRD. Of the 4542 variants clinically analysed, we have reported 402 mutations as a cause or a potential cause of disease in 62 of the 105 genes surveyed. These variants account or likely account for the clinical diagnosis of IRD in 51% of the 537 referred individuals. 144 potentially disease-causing mutations were identified as novel at the time of clinical analysis, and we further demonstrate the segregation of known disease-causing variants among individuals with IRD. We show that clinically analysed variants indicated as rare in dbSNP and the Exome Variant Server remain rare in ExAC, and that genes discovered as a cause of IRD in the post-NGS era are rare causes of IRD in a population of clinically surveyed individuals. Conclusions Our findings illustrate the continued powerful utility of custom-gene panel diagnostic NGS tests for IRD in the clinic, but suggest clear future avenues for increasing diagnostic yields.


Human Molecular Genetics | 2015

Mutations in SIPA1L3 cause eye defects through disruption of cell polarity and cytoskeleton organization

Rebecca Greenlees; Marija Mihelec; Saira Yousoof; Daniel Speidel; Selwin K. Wu; Silke Rinkwitz; Ivan Prokudin; Rahat Perveen; Anson Cheng; Alan Ma; Benjamin M. Nash; Rachel L. Gillespie; David A.F. Loebel; Jill Clayton-Smith; I. Christopher Lloyd; John Grigg; Patrick P.L. Tam; Alpha S. Yap; Thomas S. Becker; Graeme C.M. Black; Elena V. Semina; Robyn V. Jamieson

Correct morphogenesis and differentiation are critical in development and maintenance of the lens, which is a classic model system for epithelial development and disease. Through germline genomic analyses in patients with lens and eye abnormalities, we discovered functional mutations in the Signal Induced Proliferation Associated 1 Like 3 (SIPA1L3) gene, which encodes a previously uncharacterized member of the Signal Induced Proliferation Associated 1 (SIPA1 or SPA1) family, with a role in Rap1 signalling. Patient 1, with a de novo balanced translocation, 46,XY,t(2;19)(q37.3;q13.1), had lens and ocular anterior segment abnormalities. Breakpoint mapping revealed transection of SIPA1L3 at 19q13.1 and reduced SIPA1L3 expression in patient lymphoblasts. SIPA1L3 downregulation in 3D cell culture revealed morphogenetic and cell polarity abnormalities. Decreased expression of Sipa1l3 in zebrafish and mouse caused severe lens and eye abnormalities. Sipa1l3(-/-) mice showed disrupted epithelial cell organization and polarity and, notably, abnormal epithelial to mesenchymal transition in the lens. Patient 2 with cataracts was heterozygous for a missense variant in SIPA1L3, c.442G>T, p.Asp148Tyr. Examination of the p.Asp148Tyr mutation in an epithelial cell line showed abnormal clustering of actin stress fibres and decreased formation of adherens junctions. Our findings show that abnormalities of SIPA1L3 in human, zebrafish and mouse contribute to lens and eye defects, and we identify a critical role for SIPA1L3 in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization.


American Journal of Human Genetics | 2015

Biallelic Mutations in the Autophagy Regulator DRAM2 Cause Retinal Dystrophy with Early Macular Involvement

Mohammed El-Asrag; Panagiotis I. Sergouniotis; Martin McKibbin; Vincent Plagnol; Eamonn Sheridan; Naushin Waseem; Zakia Abdelhamed; Declan J. McKeefry; Kristof Van Schil; James A. Poulter; Graeme C.M. Black; Georgina Hall; Stuart Ingram; Rachel L. Gillespie; Simon C. Ramsden; Forbes D.C. Manson; Alison J. Hardcastle; Michel Michaelides; Michael Cheetham; Gavin Arno; Niclas Thomas; Shomi S. Bhattacharya; Tony Moore; Andrea H. Németh; Susan M. Downes; Stefano Lise; Emma Lord; Colin A. Johnson; Ian M. Carr; Bart P. Leroy

Retinal dystrophies are an overlapping group of genetically heterogeneous conditions resulting from mutations in more than 250 genes. Here we describe five families affected by an adult-onset retinal dystrophy with early macular involvement and associated central visual loss in the third or fourth decade of life. Affected individuals were found to harbor disease-causing variants in DRAM2 (DNA-damage regulated autophagy modulator protein 2). Homozygosity mapping and exome sequencing in a large, consanguineous British family of Pakistani origin revealed a homozygous frameshift variant (c.140delG [p.Gly47Valfs(∗)3]) in nine affected family members. Sanger sequencing of DRAM2 in 322 unrelated probands with retinal dystrophy revealed one European subject with compound heterozygous DRAM2 changes (c.494G>A [p.Trp165(∗)] and c.131G>A [p.Ser44Asn]). Inspection of previously generated exome sequencing data in unsolved retinal dystrophy cases identified a homozygous variant in an individual of Indian origin (c.64_66del [p.Ala22del]). Independently, a gene-based case-control association study was conducted via an exome sequencing dataset of 18 phenotypically similar case subjects and 1,917 control subjects. Using a recessive model and a binomial test for rare, presumed biallelic, variants, we found DRAM2 to be the most statistically enriched gene; one subject was a homozygote (c.362A>T [p.His121Leu]) and another a compound heterozygote (c.79T>C [p.Tyr27His] and c.217_225del [p.Val73_Tyr75del]). DRAM2 encodes a transmembrane lysosomal protein thought to play a role in the initiation of autophagy. Immunohistochemical analysis showed DRAM2 localization to photoreceptor inner segments and to the apical surface of retinal pigment epithelial cells where it might be involved in the process of photoreceptor renewal and recycling to preserve visual function.


Investigative Ophthalmology & Visual Science | 2015

Abrogation of HMX1 function causes rare oculoauricular syndrome associated with congenital cataract, anterior segment dysgenesis, and retinal dystrophy.

Rachel L. Gillespie; Jill Urquhart; Simon C. Lovell; Susmito Biswas; Neil R. A. Parry; Daniel F. Schorderet; I. Christopher Lloyd; Jill Clayton-Smith; Graeme C.M. Black

PURPOSE To define the phenotypic manifestation, confirm the genetic basis, and delineate the pathogenic mechanisms underlying an oculoauricular syndrome (OAS). METHODS Two individuals from a consanguineous family underwent comprehensive clinical phenotyping and electrodiagnostic testing (EDT). Genome-wide microarray analysis and Sanger sequencing of the candidate gene were used to identify the likely causal variant. Protein modelling, Western blotting, and dual luciferase assays were used to assess the pathogenic effect of the variant in vitro. RESULTS Complex developmental ocular abnormalities of congenital cataract, anterior segment dysgenesis, iris coloboma, early-onset retinal dystrophy, and abnormal external ear cartilage presented in the affected family members. Genetic analyses identified a homozygous c.650A>C; p.(Gln217Pro) missense mutation within the highly conserved homeodomain of the H6 family homeobox 1 (HMX1) gene. Protein modelling predicts that the variant may have a detrimental effect on protein folding and/or stability. In vitro analyses were able to demonstrate that the mutation has no effect on protein expression but adversely alters function. CONCLUSIONS Oculoauricular syndrome is an autosomal recessive condition that has a profound effect on the development of the external ear, anterior segment, and retina, leading to significant visual loss at an early age. This study has delineated the phenotype and confirmed HMX1 as the gene causative of OAS, enabling the description of only the second family with the condition. HMX1 is a key player in ocular development, possibly in both the pathway responsible for lens and retina development, and via the gene network integral to optic fissure closure.


Clinical and Experimental Ophthalmology | 2014

Genetic testing for inherited ocular disease: Delivering on the promise at last?

Rachel L. Gillespie; Georgina Hall; Graeme C.M. Black

Genetic testing is of increasing clinical utility for diagnosing inherited eye disease. Clarifying a clinical diagnosis is important for accurate estimation of prognosis, facilitating genetic counselling and management of families, and in the future will direct gene‐specific therapeutic strategies. Often, precise diagnosis of genetic ophthalmic conditions is complicated by genetic heterogeneity, a difficulty that the so‐called ‘next‐generation sequencing’ technologies promise to overcome. Despite considerable counselling and ethical complexities, next‐generation sequencing offers to revolutionize clinical practice. This will necessitate considerable adjustment to standard practice but has the power to deliver a personalized approach to genomic medicine for many more patients and enhance the potential for preventing vision loss.


American Journal of Human Genetics | 2017

Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies

Mingchu Xu; Yajing (Angela) Xie; Hana Abouzeid; Christopher T. Gordon; Alessia Fiorentino; Zixi Sun; Anna Lehman; Ihab S. Osman; Rachayata Dharmat; Rosa Riveiro-Alvarez; Linda Bapst-Wicht; Darwin Babino; Gavin Arno; Virginia Busetto; Li Zhao; Hui Li; Miguel A. Lopez-Martinez; Liliana F. Azevedo; Laurence Hubert; Nikolas Pontikos; Aiden Eblimit; Isabel Lorda-Sanchez; Valeria Kheir; Vincent Plagnol; Myriam Oufadem; Zachry T. Soens; Lizhu Yang; Christine Bole-Feysot; Rolph Pfundt; Nathalie Allaman-Pillet

Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole-exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven unrelated families that show a range of clinical phenotypes, including retinal degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse models, with significant embryonic lethality and severe phenotypes in the complete knockout mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its genetic etiology and highlights the complexity of the spliceosomal gene network.


Human Heredity | 2014

The Use of Autozygosity Mapping and Next-Generation Sequencing in Understanding Anterior Segment Defects Caused by an Abnormal Development of the Lens

Rachel L. Gillespie; I. Christopher Lloyd; Graeme C.M. Black

The formation of the anterior segment of the eye is an intricate process that is dependent to a large degree on the normal development of the lens. Despite intensive study of the role of well-described eye genes, many causes of lenticular and anterior segment anomalies remain elusive. The majority of genes implicated thus far act in an autosomal dominant manner. Autosomal recessive causes are less well described; their diagnosis has been hindered by technological limitations, extreme genetic heterogeneity, a lack of understanding of eye biology and the role of many genes within the genome. The opportunity for the discovery of extremely rare autosomal recessive causes of ocular abnormalities from the study of consanguineous families is large, particularly through the powerful combination of next-generation sequencing with autozygosity mapping. Having begun to overcome the genetic heterogeneity bottleneck, it is increasingly recognised that the interpretation of genetic variants and the association of novel genes with a particular phenotype remain challenging. Nonetheless, increasing understanding of the genetic and mutational basis of lens and anterior segment abnormalities will be of enormous value to our comprehension of eye disease(s). Further, it will improve our ability to accurately interpret putative disease-causing variants with the aim of providing more personalised patient care and avoiding lifelong visual loss in children.


Eye | 2016

Diagnosing the cause of bilateral paediatric cataracts: comparison of standard testing with a next-generation sequencing approach.

M. Musleh; Georgina Hall; I. C. Lloyd; Rachel L. Gillespie; Sue Waller; Sofia Douzgou; Jill Clayton-Smith; E. Kehdi; Graeme C.M. Black; J L Ashworth

PurposeIn addition to environmental causes such as TORCH infection, trauma and drug or chemical exposure, childhood cataracts (CC) frequently have a genetic basis. They may be isolated or syndromic and have been associated with mutations in over 110 genes. We have recently demonstrated that next-generation sequencing (NGS), a high throughput sequencing technique that enables the parallel sequencing of multiple genes, is ideally suited to the investigation of bilateral CC. This study assesses the diagnostic outcomes of traditional routine investigations and compares this with outcomes of NGS testing.MethodsA retrospective review of the medical records of 27 consecutive patients with bilateral CC presenting in 2010–2012 was undertaken. The outcomes of routine investigations in these patients, including TORCH screen, urinalysis, karyotyping, and urinary and plasma organic amino acids, were collated. The success of routine genetic investigations undertaken over 10 years (2000–2010) was also assessed.ResultsBy April 2014, the underlying cause of bilateral CC had been identified in just one of 27 patients despite 44% (n=12) receiving a full ‘standard’ investigative work-up and 22% (n=6) investigations in addition to the standard work-up. Fifteen of these patients underwent NGS testing and nine (60%) of these received a diagnosis for their CC.ConclusionThe frequency of patients receiving a diagnosis for their CC after standard care and the time taken to diagnosis was disappointing. NGS testing improved diagnostic rates and time to diagnosis, as well as changing clinical management. These data serve as a baseline for future evaluation of novel diagnostic modalities.


Archive | 2017

The Role of Molecular Genetics in the Assessment of Children with Congenital Cataract

Rachel L. Gillespie; Graeme C.M. Black

The crystalline lens of the eye has long been a model system for the complexities of tissue induction and morphogenesis as well as cell specification and differentiation. The unique protein content of the lens has also been the subject of intensive study in respect to stability, aggregation and longevity in the absence of vasculature and innervations. Cataract, the main pathology of the lens, occurs as a result of direct alterations to protein folding, stability or solubility, or indirectly via altered cellular physiology.

Collaboration


Dive into the Rachel L. Gillespie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Christopher Lloyd

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon C. Ramsden

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Georgina Hall

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Jane Ashworth

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Susmito Biswas

Manchester Royal Eye Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjeev Bhaskar

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge