Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel L. Graham is active.

Publication


Featured researches published by Rachel L. Graham.


Journal of Virology | 2010

Recombination, Reservoirs, and the Modular Spike: Mechanisms of Coronavirus Cross-Species Transmission

Rachel L. Graham; Ralph S. Baric

ABSTRACT Over the past 30 years, several cross-species transmission events, as well as changes in virus tropism, have mediated significant animal and human diseases. Most notable is severe acute respiratory syndrome (SARS), a lower respiratory tract disease of humans that was first reported in late 2002 in Guangdong Province, China. The disease, which quickly spread worldwide over a period of 4 months spanning late 2002 and early 2003, infected over 8,000 individuals and killed nearly 800 before it was successfully contained by aggressive public health intervention strategies. A coronavirus (SARS-CoV) was identified as the etiological agent of SARS, and initial assessments determined that the virus crossed to human hosts from zoonotic reservoirs, including bats, Himalayan palm civets (Paguma larvata), and raccoon dogs (Nyctereutes procyonoides), sold in exotic animal markets in Guangdong Province. In this review, we discuss the molecular mechanisms that govern coronavirus cross-species transmission both in vitro and in vivo, using the emergence of SARS-CoV as a model. We pay particular attention to how changes in the Spike attachment protein, both within and outside of the receptor binding domain, mediate the emergence of coronaviruses in new host populations.


Nature Reviews Microbiology | 2013

A decade after SARS: strategies for controlling emerging coronaviruses

Rachel L. Graham; Eric F. Donaldson; Ralph S. Baric

Two novel coronaviruses have emerged in humans in the twenty-first century: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), both of which cause acute respiratory distress syndrome (ARDS) and are associated with high mortality rates. There are no clinically approved vaccines or antiviral drugs available for either of these infections; thus, the development of effective therapeutic and preventive strategies that can be readily applied to new emergent strains is a research priority. In this Review, we describe the emergence and identification of novel human coronaviruses over the past 10 years, discuss their key biological features, including tropism and receptor use, and summarize approaches for developing broadly effective vaccines.


PLOS Pathogens | 2010

Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.

Lance D. Eckerle; Michelle M. Becker; Rebecca A. Halpin; Kelvin Li; Eli Venter; Xiaotao Lu; Sana Scherbakova; Rachel L. Graham; Ralph S. Baric; Timothy B. Stockwell; David J. Spiro; Mark R. Denison

Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice

Michelle M. Becker; Rachel L. Graham; Eric F. Donaldson; Barry Rockx; Amy C. Sims; Timothy Sheahan; Raymond J. Pickles; Davide Corti; Robert E. Johnston; Ralph S. Baric; Mark R. Denison

Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution

Xian Chun Tang; Sudhakar Agnihothram; Yongjun Jiao; Jeremy Stanhope; Rachel L. Graham; Eric C. Peterson; Yuval Avnir; Aimee St. Clair Tallarico; Jared Sheehan; Quan Zhu; Ralph S. Baric; Wayne A. Marasco

Significance The recently emerged Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes severe respiratory disease with ∼43% mortality. There is no licensed vaccine or antiviral for MERS. Here we identified seven human neutralizing Abs (nAbs) against MERS-CoV. These nAbs bind to three epitope groups in the viral Spike protein–receptor interface, blocking virus attachment. Five residues in the viral receptor-binding domain critical for neutralization escape were identified. Further study indicated that four of five mutations not only confer neutralization resistance but also impair receptor binding and viral fitness. This panel of nAbs offers the possibility of developing human mAb-based immunotherapy. The newly emerging Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a Severe Acute Respiratory Syndrome-like disease with ∼43% mortality. Given the recent detection of virus in dromedary camels, zoonotic transfer of MERS-CoV to humans is suspected. In addition, little is known about the role of human neutralizing Ab (nAb) pressure as a driving force in MERS-CoV adaptive evolution. Here, we used a well-characterized nonimmune human Ab-phage library and a panning strategy with proteoliposomes and cells to identify seven human nAbs against the receptor-binding domain (RBD) of the MERS-CoV Spike protein. These nAbs bind to three different epitopes in the RBD and human dipeptidyl peptidase 4 (hDPP4) interface with subnanomolar/nanomolar binding affinities and block the binding of MERS-CoV Spike protein with its hDPP4 receptor. Escape mutant assays identified five amino acid residues that are critical for neutralization escape. Despite the close proximity of the three epitopes on the RBD interface, escape from one epitope did not have a major impact on neutralization with Abs directed to a different epitope. Importantly, the majority of escape mutations had negative impacts on hDPP4 receptor binding and viral fitness. To our knowledge, these results provide the first report on human nAbs against MERS-CoV that may contribute to MERS-CoV clearance and evolution. Moreover, in the absence of a licensed vaccine or antiviral for MERS, this panel of nAbs offers the possibility of developing human mAb-based immunotherapy, especially for health-care workers.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus

Trevor Scobey; Boyd Yount; Amy C. Sims; Eric F. Donaldson; Sudhakar Agnihothram; Vineet D. Menachery; Rachel L. Graham; Jesica Swanstrom; Peter F. Bove; Jeeho D. Kim; Sonia Grego; Scott H. Randell; Ralph S. Baric

Significance The identification of a novel, emerging human coronavirus with ∼50% mortality, designated Middle East respiratory syndrome coronavirus (MERS-CoV), emphasizes the importance of the rapid development of reagents that can be used to (i) characterize the replication and pathogenesis of emerging pathogens and (ii) develop therapeutics for treatment. In this report, we describe the development of a cassette-based infectious cDNA clone of MERS-CoV and verify that it functions similarly to the wild-type isolate in terms of replication, protein and RNA expression, and spike attachment protein processing. We also show that the virus replicates preferentially in differentiated primary lung cells. Severe acute respiratory syndrome with high mortality rates (∼50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ∼0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3–5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3–5 showed 1–1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.


Mbio | 2013

Cell Host Response to Infection with Novel Human Coronavirus EMC Predicts Potential Antivirals and Important Differences with SARS Coronavirus

Laurence Josset; Vineet D. Menachery; Lisa E. Gralinski; Sudhakar Agnihothram; Pavel Sova; Victoria S. Carter; Boyd Yount; Rachel L. Graham; Ralph S. Baric; Michael G. Katze

ABSTRACT A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus. IMPORTANCE Identification of a novel coronavirus causing fatal respiratory infection in humans raises concerns about a possible widespread outbreak of severe respiratory infection similar to the one caused by SARS-CoV. Using a human lung epithelial cell line and global transcriptomic profiling, we identified differences in the host response between HCoV-EMC and SARS-CoV. This enables rapid assessment of viral properties and the ability to anticipate possible differences in human clinical responses to HCoV-EMC and SARS-CoV. We used this information to predict potential effective drugs against HCoV-EMC, a method that could be more generally used to identify candidate therapeutics in future disease outbreaks. These data will help to generate hypotheses and make rapid advancements in characterizing this new virus. Identification of a novel coronavirus causing fatal respiratory infection in humans raises concerns about a possible widespread outbreak of severe respiratory infection similar to the one caused by SARS-CoV. Using a human lung epithelial cell line and global transcriptomic profiling, we identified differences in the host response between HCoV-EMC and SARS-CoV. This enables rapid assessment of viral properties and the ability to anticipate possible differences in human clinical responses to HCoV-EMC and SARS-CoV. We used this information to predict potential effective drugs against HCoV-EMC, a method that could be more generally used to identify candidate therapeutics in future disease outbreaks. These data will help to generate hypotheses and make rapid advancements in characterizing this new virus.


Journal of Virology | 2005

Single-amino-acid substitutions in open reading frame (ORF) 1b-nsp14 and ORF 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice.

Steven M. Sperry; Lubna Kazi; Rachel L. Graham; Ralph S. Baric; Susan R. Weiss; Mark R. Denison

ABSTRACT A reverse genetic system was recently established for the coronavirus mouse hepatitis virus strain A59 (MHV-A59), in which cDNA fragments of the RNA genome are assembled in vitro into a full-length genome cDNA, followed by electroporation of in vitro-transcribed genome RNA into cells with recovery of viable virus. The “in vitro-assembled” wild-type MHV-A59 virus (icMHV-A59) demonstrated replication identical to laboratory strains of MHV-A59 in tissue culture; however, icMHV-A59 was avirulent following intracranial inoculation of C57BL/6 mice. Sequencing of the cloned genome cDNA fragments identified two single-nucleotide mutations in cloned genome fragment F, encoding a Tyr6398His substitution in open reading frame (ORF) 1b p59-nsp14 and a Leu94Pro substitution in the ORF 2a 30-kDa protein. The mutations were repaired individually and together in recombinant viruses, all of which demonstrated wild-type replication in tissue culture. Following intracranial inoculation of mice, the viruses encoding Tyr6398His/Leu94Pro substitutions and the Tyr6398His substitution alone demonstrated log10 50% lethal dose (LD50) values too great to be measured. The Leu94Pro mutant virus had reduced but measurable log10 LD50, and the “corrected” Tyr6398/Leu94 virus had a log10 LD50 identical to wild-type MHV-A59. The experiments have defined residues in ORF 1b and ORF 2a that attenuate virus replication and virulence in mice but do not affect in vitro replication. The results suggest that these proteins serve roles in pathogenesis or virus survival in vivo distinct from functions in virus replication. The study also demonstrates the usefulness of the reverse genetic system to confirm the role of residues or proteins in coronavirus replication and pathogenesis.


Journal of Virology | 2005

The nsp2 Replicase Proteins of Murine Hepatitis Virus and Severe Acute Respiratory Syndrome Coronavirus Are Dispensable for Viral Replication

Rachel L. Graham; Amy C. Sims; Sarah M. Brockway; Ralph S. Baric; Mark R. Denison

ABSTRACT The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVΔnsp2 and SARSΔnsp2, respectively). Infectious MHVΔnsp2 and SARSΔnsp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Δnsp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVΔnsp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVΔnsp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function.


Nature Medicine | 2012

A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease

Rachel L. Graham; Michelle M. Becker; Lance D. Eckerle; M. Marjorie Bolles; Mark R. Denison; Ralph S. Baric

Live, attenuated RNA virus vaccines are efficacious but subject to reversion to virulence. Among RNA viruses, replication fidelity is recognized as a key determinant of virulence and escape from antiviral therapy; increased fidelity is attenuating for some viruses. Coronavirus (CoV) replication fidelity is approximately 20-fold greater than that of other RNA viruses and is mediated by a 3′→5′ exonuclease (ExoN) activity that probably functions in RNA proofreading. In this study we demonstrate that engineered inactivation of severe acute respiratory syndrome (SARS)-CoV ExoN activity results in a stable mutator phenotype with profoundly decreased fidelity in vivo and attenuation of pathogenesis in young, aged and immunocompromised mice. The ExoN inactivation genotype and mutator phenotype are stable and do not revert to virulence, even after serial passage or long-term persistent infection in vivo. ExoN inactivation has potential for broad applications in the stable attenuation of CoVs and, perhaps, other RNA viruses.

Collaboration


Dive into the Rachel L. Graham's collaboration.

Top Co-Authors

Avatar

Ralph S. Baric

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Mark R. Denison

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Vineet D. Menachery

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Boyd Yount

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Eric F. Donaldson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Amy C. Sims

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Lisa E. Gralinski

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kari Debbink

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Sudhakar Agnihothram

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Trevor Scobey

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge