Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel L. Moseley is active.

Publication


Featured researches published by Rachel L. Moseley.


Cerebral Cortex | 2012

A Role for the Motor System in Binding Abstract Emotional Meaning

Rachel L. Moseley; Francesca Carota; Olaf Hauk; Bettina Mohr; Friedemann Pulvermüller

Sensorimotor areas activate to action- and object-related words, but their role in abstract meaning processing is still debated. Abstract emotion words denoting body internal states are a critical test case because they lack referential links to objects. If actions expressing emotion are crucial for learning correspondences between word forms and emotions, emotion word–evoked activity should emerge in motor brain systems controlling the face and arms, which typically express emotions. To test this hypothesis, we recruited 18 native speakers and used event-related functional magnetic resonance imaging to compare brain activation evoked by abstract emotion words to that by face- and arm-related action words. In addition to limbic regions, emotion words indeed sparked precentral cortex, including body-part–specific areas activated somatotopically by face words or arm words. Control items, including hash mark strings and animal words, failed to activate precentral areas. We conclude that, similar to their role in action word processing, activation of frontocentral motor systems in the dorsal stream reflects the semantic binding of sign and meaning of abstract words denoting emotions and possibly other body internal states.


Brain and Language | 2014

Nouns, verbs, objects, actions, and abstractions: local fMRI activity indexes semantics, not lexical categories.

Rachel L. Moseley; Friedemann Pulvermüller

Highlights • Concrete nouns and verbs elicit different brain signatures in frontocentral cortex.• Abstract nouns and verbs fail to elicit different brain activation patterns.• Concrete verbs activate motor and premotor cortex more strongly than concrete nouns.• Concrete nouns activate inferior frontal areas more strongly than concrete verbs.• Lexical category distinctions in middle temporal cortex cannot be confirmed.


Journal of Cognitive Neuroscience | 2012

Body-part-specific representations of semantic noun categories

Francesca Carota; Rachel L. Moseley; Friedemann Pulvermüller

Word meaning processing in the brain involves ventrolateral temporal cortex, but a semantic contribution of the dorsal stream, especially frontocentral sensorimotor areas, has been controversial. We here examine brain activation during passive reading of object-related nouns from different semantic categories, notably animal, food, and tool words, matched for a range of psycholinguistic features. Results show ventral stream activation in temporal cortex along with category-specific activation patterns in both ventral and dorsal streams, including sensorimotor systems and adjacent pFC. Precentral activation reflected action-related semantic features of the word categories. Cortical regions implicated in mouth and face movements were sparked by food words, and hand area activation was seen for tool words, consistent with the actions implicated by the objects the words are used to speak about. Furthermore, tool words specifically activated the right cerebellum, and food words activated the left orbito-frontal and fusiform areas. We discuss our results in the context of category-specific semantic deficits in the processing of words and concepts, along with previous neuroimaging research, and conclude that specific dorsal and ventral areas in frontocentral and temporal cortex index visual and affective–emotional semantic attributes of object-related nouns and action-related affordances of their referent objects.


Neuropsychologia | 2014

Motor cognition-motor semantics: Action perception theory of cognition and communication

Friedemann Pulvermüller; Rachel L. Moseley; Natalia Egorova; Zubaida Shebani; Véronique Boulenger

A new perspective on cognition views cortical cell assemblies linking together knowledge about actions and perceptions not only as the vehicles of integrated action and perception processing but, furthermore, as a brain basis for a wide range of higher cortical functions, including attention, meaning and concepts, sequences, goals and intentions, and even communicative social interaction. This article explains mechanisms relevant to mechanistic action perception theory, points to concrete neuronal circuits in brains along with artificial neuronal network simulations, and summarizes recent brain imaging and other experimental data documenting the role of action perception circuits in cognition, language and communication.


Scientific Reports | 2013

Sensorimotor semantics on the spot: brain activity dissociates between conceptual categories within 150 ms

Rachel L. Moseley; Friedemann Pulvermüller; Yury Shtyrov

Although semantic processing has traditionally been associated with brain responses maximal at 350–400 ms, recent studies reported that words of different semantic types elicit topographically distinct brain responses substantially earlier, at 100–200 ms. These earlier responses have, however, been achieved using insufficiently precise source localisation techniques, therefore casting doubt on reported differences in brain generators. Here, we used high-density MEG-EEG recordings in combination with individual MRI images and state-of-the-art source reconstruction techniques to compare localised early activations elicited by words from different semantic categories in different cortical areas. Reliable neurophysiological word-category dissociations emerged bilaterally at ~ 150 ms, at which point action-related words most strongly activated frontocentral motor areas and visual object-words occipitotemporal cortex. These data now show that different cortical areas are activated rapidly by words with different meanings and that aspects of their category-specific semantics is reflected by dissociating neurophysiological sources in motor and visual brain systems.


NeuroImage: Clinical | 2015

Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents.

Rachel L. Moseley; Rjf Ypma; Rosemary Jane Holt; Dorothea L. Floris; Lr Chura; Michael D. Spencer; Simon Baron-Cohen; John Suckling; Edward T. Bullmore; Mikail Rubinov

Endophenotypes are heritable and quantifiable markers that may assist in the identification of the complex genetic underpinnings of psychiatric conditions. Here we examined global hypoconnectivity as an endophenotype of autism spectrum conditions (ASCs). We studied well-matched groups of adolescent males with autism, genetically-related siblings of individuals with autism, and typically-developing control participants. We parcellated the brain into 258 regions and used complex-network analysis to detect a robust hypoconnectivity endophenotype in our participant group. We observed that whole-brain functional connectivity was highest in controls, intermediate in siblings, and lowest in ASC, in task and rest conditions. We identified additional, local endophenotype effects in specific networks including the visual processing and default mode networks. Our analyses are the first to show that whole-brain functional hypoconnectivity is an endophenotype of autism in adolescence, and may thus underlie the heritable similarities seen in adolescents with ASC and their relatives.


NeuroImage | 2015

Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory

Rachel L. Moseley; Yury Shtyrov; Bettina Mohr; Michael V. Lombardo; Simon Baron-Cohen; Friedemann Pulvermüller

Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed.


Frontiers in Human Neuroscience | 2013

Brain and behavioral correlates of action semantic deficits in autism

Rachel L. Moseley; Bettina Mohr; Michael V. Lombardo; Simon Baron-Cohen; Olaf Hauk; Friedemann Pulvermüller

Action-perception circuits containing neurons in the motor system have been proposed as the building blocks of higher cognition; accordingly, motor dysfunction should entail cognitive deficits. Autism spectrum conditions (ASC) are marked by motor impairments but the implications of such motor dysfunction for higher cognition remain unclear. We here used word reading and semantic judgment tasks to investigate action-related motor cognition and its corresponding fMRI brain activation in high-functioning adults with ASC. These participants exhibited hypoactivity of motor cortex in language processing relative to typically developing controls. Crucially, we also found a deficit in semantic processing of action-related words, which, intriguingly, significantly correlated with this underactivation of motor cortex to these items. Furthermore, the word-induced hypoactivity in the motor system also predicted the severity of ASC as expressed by the number of autistic symptoms measured by the Autism-Spectrum Quotient (Baron-Cohen etal., 2001). These significant correlations between word-induced activation of the motor system and a newly discovered semantic deficit in a condition known to be characterized by motor impairments, along with the correlation of such activation with general autistic traits, confirm critical predictions of causal theories linking cognitive and semantic deficits in ASC, in part, to dysfunctional action-perception circuits and resultant reduction of motor system activation.


Journal of Autism and Developmental Disorders | 2014

Brain Routes for Reading in Adults with and without Autism: EMEG Evidence

Rachel L. Moseley; Friedemann Pulvermüller; Bettina Mohr; Michael V. Lombardo; Simon Baron-Cohen; Yury Shtyrov

Reading utilises at least two neural pathways. The temporal lexical route visually maps whole words to their lexical entries, whilst the nonlexical route decodes words phonologically via parietal cortex. Readers typically employ the lexical route for familiar words, but poor comprehension plus precocity at mechanically ‘sounding out’ words suggests that differences might exist in autism. Combined MEG/EEG recordings of adults with autistic spectrum conditions (ASC) and controls while reading revealed preferential recruitment of temporal areas in controls and additional parietal recruitment in ASC. Furthermore, a lack of differences between semantic word categories was consistent with previous suggestion that people with ASC may lack a ‘default’ lexical-semantic processing mode. These results are discussed with reference to dual-route models of reading.


Frontiers in Human Neuroscience | 2016

Reduced Volume of the Arcuate Fasciculus in Adults with High-Functioning Autism Spectrum Conditions

Rachel L. Moseley; Marta Correia; Simon Baron-Cohen; Yury Shtyrov; Friedemann Pulvermüller; Bettina Mohr

Atypical language is a fundamental feature of autism spectrum conditions (ASC), but few studies have examined the structural integrity of the arcuate fasciculus, the major white matter tract connecting frontal and temporal language regions, which is usually implicated as the main transfer route used in processing linguistic information by the brain. Abnormalities in the arcuate have been reported in young children with ASC, mostly in low-functioning or non-verbal individuals, but little is known regarding the structural properties of the arcuate in adults with ASC or, in particular, in individuals with ASC who have intact language, such as those with high-functioning autism or Asperger syndrome. We used probabilistic tractography of diffusion-weighted imaging to isolate and scrutinize the arcuate in a mixed-gender sample of 18 high-functioning adults with ASC (17 Asperger syndrome) and 14 age- and IQ-matched typically developing controls. Arcuate volume was significantly reduced bilaterally with clearest differences in the right hemisphere. This finding remained significant in an analysis of all male participants alone. Volumetric reduction in the arcuate was significantly correlated with the severity of autistic symptoms as measured by the Autism-Spectrum Quotient. These data reveal that structural differences are present even in high-functioning adults with ASC, who presented with no clinically manifest language deficits and had no reported developmental language delay. Arcuate structural integrity may be useful as an index of ASC severity and thus as a predictor and biomarker for ASC. Implications for future research are discussed.

Collaboration


Dive into the Rachel L. Moseley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf Hauk

Cognition and Brain Sciences Unit

View shared research outputs
Top Co-Authors

Avatar

Francesca Carota

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge